Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133128923> ?p ?o ?g. }
- W2133128923 endingPage "1791" @default.
- W2133128923 startingPage "1778" @default.
- W2133128923 abstract "When seeking prognostic information for patients, modern technologies provide a huge amount of genomic measurements as a starting point. For single-nucleotide polymorphisms (SNPs), there may be more than one million covariates that need to be simultaneously considered with respect to a clinical endpoint. Although the underlying biological problem cannot be solved on the basis of clinical cohorts of only modest size, some important SNPs might still be identified. Sparse multivariable regression techniques have recently become available for automatically identifying prognostic molecular signatures that comprise relatively few covariates and provide reasonable prediction performance. For illustrating how such approaches can be adapted to the specific features of SNP data, we propose different variants of a componentwise likelihood-based boosting approach. The latter links SNP measurements to a time-to-event endpoint by a regression model that is built up in a large number of steps. The variants allow for strategic choices in dealing with SNPs that differ in variance because of their variation in minor allele frequencies. In addition, we propose a heuristic that allows computationally efficient handling of millions of covariates, thus opening the door for incorporating SNP × treatment interactions. We illustrate this using data from patients with acute myeloid leukemia. We judge the resulting models according to prediction error curves and using resampling data sets. We obtain increased stability by moving interpretation from the SNP to the gene level. By considering these different aspects, we outline a more general strategy for linking SNP measurements to a time-to-event endpoint by means of sparse multivariable regression models. Copyright © 2012 John Wiley & Sons, Ltd." @default.
- W2133128923 created "2016-06-24" @default.
- W2133128923 creator A5011534196 @default.
- W2133128923 creator A5029575769 @default.
- W2133128923 creator A5040956966 @default.
- W2133128923 creator A5083132916 @default.
- W2133128923 date "2012-07-11" @default.
- W2133128923 modified "2023-10-18" @default.
- W2133128923 title "Tailoring sparse multivariable regression techniques for prognostic single-nucleotide polymorphism signatures" @default.
- W2133128923 cites W1570622790 @default.
- W2133128923 cites W1975000439 @default.
- W2133128923 cites W1986546598 @default.
- W2133128923 cites W1988615111 @default.
- W2133128923 cites W1989160450 @default.
- W2133128923 cites W1990072751 @default.
- W2133128923 cites W1992436001 @default.
- W2133128923 cites W1992549534 @default.
- W2133128923 cites W1996093516 @default.
- W2133128923 cites W2009815126 @default.
- W2133128923 cites W2025266808 @default.
- W2133128923 cites W2039656279 @default.
- W2133128923 cites W2056503027 @default.
- W2133128923 cites W2060449950 @default.
- W2133128923 cites W2063978378 @default.
- W2133128923 cites W2097554668 @default.
- W2133128923 cites W2102336370 @default.
- W2133128923 cites W2116858301 @default.
- W2133128923 cites W2121514846 @default.
- W2133128923 cites W2122189635 @default.
- W2133128923 cites W2122825543 @default.
- W2133128923 cites W2141967797 @default.
- W2133128923 cites W2147272585 @default.
- W2133128923 cites W2150965754 @default.
- W2133128923 cites W2152615911 @default.
- W2133128923 cites W2161441016 @default.
- W2133128923 cites W2161630867 @default.
- W2133128923 cites W2162083896 @default.
- W2133128923 cites W2165970190 @default.
- W2133128923 cites W2168391930 @default.
- W2133128923 cites W2260541909 @default.
- W2133128923 cites W3105702746 @default.
- W2133128923 doi "https://doi.org/10.1002/sim.5490" @default.
- W2133128923 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22786659" @default.
- W2133128923 hasPublicationYear "2012" @default.
- W2133128923 type Work @default.
- W2133128923 sameAs 2133128923 @default.
- W2133128923 citedByCount "21" @default.
- W2133128923 countsByYear W21331289232014 @default.
- W2133128923 countsByYear W21331289232015 @default.
- W2133128923 countsByYear W21331289232016 @default.
- W2133128923 countsByYear W21331289232018 @default.
- W2133128923 countsByYear W21331289232019 @default.
- W2133128923 countsByYear W21331289232020 @default.
- W2133128923 countsByYear W21331289232021 @default.
- W2133128923 countsByYear W21331289232022 @default.
- W2133128923 countsByYear W21331289232023 @default.
- W2133128923 crossrefType "journal-article" @default.
- W2133128923 hasAuthorship W2133128923A5011534196 @default.
- W2133128923 hasAuthorship W2133128923A5029575769 @default.
- W2133128923 hasAuthorship W2133128923A5040956966 @default.
- W2133128923 hasAuthorship W2133128923A5083132916 @default.
- W2133128923 hasConcept C104317684 @default.
- W2133128923 hasConcept C105795698 @default.
- W2133128923 hasConcept C117312493 @default.
- W2133128923 hasConcept C119043178 @default.
- W2133128923 hasConcept C119857082 @default.
- W2133128923 hasConcept C124101348 @default.
- W2133128923 hasConcept C127413603 @default.
- W2133128923 hasConcept C133731056 @default.
- W2133128923 hasConcept C135763542 @default.
- W2133128923 hasConcept C139275648 @default.
- W2133128923 hasConcept C150921843 @default.
- W2133128923 hasConcept C153209595 @default.
- W2133128923 hasConcept C154945302 @default.
- W2133128923 hasConcept C157410074 @default.
- W2133128923 hasConcept C33923547 @default.
- W2133128923 hasConcept C41008148 @default.
- W2133128923 hasConcept C54355233 @default.
- W2133128923 hasConcept C70721500 @default.
- W2133128923 hasConcept C83546350 @default.
- W2133128923 hasConcept C86803240 @default.
- W2133128923 hasConceptScore W2133128923C104317684 @default.
- W2133128923 hasConceptScore W2133128923C105795698 @default.
- W2133128923 hasConceptScore W2133128923C117312493 @default.
- W2133128923 hasConceptScore W2133128923C119043178 @default.
- W2133128923 hasConceptScore W2133128923C119857082 @default.
- W2133128923 hasConceptScore W2133128923C124101348 @default.
- W2133128923 hasConceptScore W2133128923C127413603 @default.
- W2133128923 hasConceptScore W2133128923C133731056 @default.
- W2133128923 hasConceptScore W2133128923C135763542 @default.
- W2133128923 hasConceptScore W2133128923C139275648 @default.
- W2133128923 hasConceptScore W2133128923C150921843 @default.
- W2133128923 hasConceptScore W2133128923C153209595 @default.
- W2133128923 hasConceptScore W2133128923C154945302 @default.
- W2133128923 hasConceptScore W2133128923C157410074 @default.
- W2133128923 hasConceptScore W2133128923C33923547 @default.
- W2133128923 hasConceptScore W2133128923C41008148 @default.
- W2133128923 hasConceptScore W2133128923C54355233 @default.