Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133160798> ?p ?o ?g. }
- W2133160798 endingPage "1103" @default.
- W2133160798 startingPage "1095" @default.
- W2133160798 abstract "Data-based empirical models, though widely used in process optimization, are restricted to a specific process being modeled. Model migration has been proved to be an effective technique to adapt a base model from a old process to a new but similar process. This paper proposes to apply the flexible Gaussian process regression (GPR) for empirical modeling, and develops a Bayesian method for migrating the GPR model. The migration is conducted by a functional scale-bias correction of the base model, as opposed to the restrictive parametric scale-bias approach. Furthermore, an iterative approach that jointly accomplishes model migration and process optimization is presented. This is in contrast to the conventional “two-step” method whereby an accurate model is developed prior to model-based optimization. A rigorous statistical measure, the expected improvement, is adopted for optimization in the presence of prediction uncertainty. The proposed methodology has been applied to the optimization of a simulated chemical process, and a real catalytic reaction for the epoxidation of trans-stilbene." @default.
- W2133160798 created "2016-06-24" @default.
- W2133160798 creator A5002154840 @default.
- W2133160798 creator A5047171802 @default.
- W2133160798 creator A5054969952 @default.
- W2133160798 creator A5056327234 @default.
- W2133160798 creator A5057979028 @default.
- W2133160798 date "2011-02-01" @default.
- W2133160798 modified "2023-10-18" @default.
- W2133160798 title "Bayesian migration of Gaussian process regression for rapid process modeling and optimization" @default.
- W2133160798 cites W1570834090 @default.
- W2133160798 cites W1964608520 @default.
- W2133160798 cites W1968225287 @default.
- W2133160798 cites W1973333099 @default.
- W2133160798 cites W1989196805 @default.
- W2133160798 cites W1992880816 @default.
- W2133160798 cites W2003657827 @default.
- W2133160798 cites W2006998081 @default.
- W2133160798 cites W2010004527 @default.
- W2133160798 cites W2013509042 @default.
- W2133160798 cites W2018044188 @default.
- W2133160798 cites W2034981953 @default.
- W2133160798 cites W2053275976 @default.
- W2133160798 cites W2074146581 @default.
- W2133160798 cites W2079078736 @default.
- W2133160798 cites W2081672625 @default.
- W2133160798 cites W2081709852 @default.
- W2133160798 cites W2082640612 @default.
- W2133160798 cites W2085661620 @default.
- W2133160798 cites W2092091646 @default.
- W2133160798 cites W2120823309 @default.
- W2133160798 cites W2123137684 @default.
- W2133160798 cites W2146038212 @default.
- W2133160798 cites W2146260999 @default.
- W2133160798 cites W2151238122 @default.
- W2133160798 cites W2153233077 @default.
- W2133160798 cites W2167284483 @default.
- W2133160798 cites W4246916037 @default.
- W2133160798 cites W4248911614 @default.
- W2133160798 cites W4249517230 @default.
- W2133160798 doi "https://doi.org/10.1016/j.cej.2010.11.097" @default.
- W2133160798 hasPublicationYear "2011" @default.
- W2133160798 type Work @default.
- W2133160798 sameAs 2133160798 @default.
- W2133160798 citedByCount "44" @default.
- W2133160798 countsByYear W21331607982012 @default.
- W2133160798 countsByYear W21331607982013 @default.
- W2133160798 countsByYear W21331607982015 @default.
- W2133160798 countsByYear W21331607982016 @default.
- W2133160798 countsByYear W21331607982017 @default.
- W2133160798 countsByYear W21331607982018 @default.
- W2133160798 countsByYear W21331607982019 @default.
- W2133160798 countsByYear W21331607982020 @default.
- W2133160798 countsByYear W21331607982021 @default.
- W2133160798 countsByYear W21331607982022 @default.
- W2133160798 countsByYear W21331607982023 @default.
- W2133160798 crossrefType "journal-article" @default.
- W2133160798 hasAuthorship W2133160798A5002154840 @default.
- W2133160798 hasAuthorship W2133160798A5047171802 @default.
- W2133160798 hasAuthorship W2133160798A5054969952 @default.
- W2133160798 hasAuthorship W2133160798A5056327234 @default.
- W2133160798 hasAuthorship W2133160798A5057979028 @default.
- W2133160798 hasConcept C105795698 @default.
- W2133160798 hasConcept C107673813 @default.
- W2133160798 hasConcept C111919701 @default.
- W2133160798 hasConcept C115952470 @default.
- W2133160798 hasConcept C117251300 @default.
- W2133160798 hasConcept C119857082 @default.
- W2133160798 hasConcept C121332964 @default.
- W2133160798 hasConcept C126255220 @default.
- W2133160798 hasConcept C127413603 @default.
- W2133160798 hasConcept C154945302 @default.
- W2133160798 hasConcept C163716315 @default.
- W2133160798 hasConcept C24574437 @default.
- W2133160798 hasConcept C2778049539 @default.
- W2133160798 hasConcept C2778755073 @default.
- W2133160798 hasConcept C33923547 @default.
- W2133160798 hasConcept C41008148 @default.
- W2133160798 hasConcept C61326573 @default.
- W2133160798 hasConcept C62520636 @default.
- W2133160798 hasConcept C76956256 @default.
- W2133160798 hasConcept C81692654 @default.
- W2133160798 hasConcept C87717796 @default.
- W2133160798 hasConcept C98045186 @default.
- W2133160798 hasConceptScore W2133160798C105795698 @default.
- W2133160798 hasConceptScore W2133160798C107673813 @default.
- W2133160798 hasConceptScore W2133160798C111919701 @default.
- W2133160798 hasConceptScore W2133160798C115952470 @default.
- W2133160798 hasConceptScore W2133160798C117251300 @default.
- W2133160798 hasConceptScore W2133160798C119857082 @default.
- W2133160798 hasConceptScore W2133160798C121332964 @default.
- W2133160798 hasConceptScore W2133160798C126255220 @default.
- W2133160798 hasConceptScore W2133160798C127413603 @default.
- W2133160798 hasConceptScore W2133160798C154945302 @default.
- W2133160798 hasConceptScore W2133160798C163716315 @default.
- W2133160798 hasConceptScore W2133160798C24574437 @default.
- W2133160798 hasConceptScore W2133160798C2778049539 @default.
- W2133160798 hasConceptScore W2133160798C2778755073 @default.