Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133214869> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2133214869 endingPage "012041" @default.
- W2133214869 startingPage "012041" @default.
- W2133214869 abstract "In this paper a methodology and an application example are presented aiming to show how Artificial Neural Networks (ANNs) can be used to model manufacturing processes when mathematical models are missing or are not applicable e.g. due to the micro- & nano-scaling, due to non-conventional processes, etc. Besides the ANNs methodology, the results of a Software System developed will be presented, which was used to create ANNs models for micro & nano manufacturing processes. More specifically results of a specific application example will be presented, concerning the modeling of extrusion processes for polymeric micro-tubes. ANNs models are capable for modeling manufacturing processes as far as adequate experimental and/or historical data of processes' inputs & outputs are available for their training. The POLYTUBES ANNs models have been trained and tested with experimental data records of process' inputs and outputs concerning a micro-extrusion process of polymeric micro-tubes for several materials such as: COC, PC, PET, PETG, PP and PVDF. The main ANN model of the extrusion application example has 3 inputs and 9 outputs. The inputs are: tube's inner & outer diameters, and the material density. The model outputs are 9 process parameters, which correspond to the specific inputs e.g. process temperature, die inner & outer diameters, extrusion pressure, draw speed etc. The training of the ANN model was completed, when the errors for the model's outputs, which expressed the difference between the training target values and the ANNs outputs, were minimized to acceptable levels. After the training, the micro-extrusion ANN is capable to simulate the process and can be used to calculate model's outputs, which are the process parameters for any new set of inputs. By this way a satisfactory functional approximation of the whole process is achieved. This research work has been supported by the EU FP7 NMP project POLYTUBES." @default.
- W2133214869 created "2016-06-24" @default.
- W2133214869 creator A5008453297 @default.
- W2133214869 creator A5055054315 @default.
- W2133214869 date "2012-09-13" @default.
- W2133214869 modified "2023-09-27" @default.
- W2133214869 title "Using artificial neural networks to model extrusion processes for the manufacturing of polymeric micro-tubes" @default.
- W2133214869 cites W1991023460 @default.
- W2133214869 cites W2000259711 @default.
- W2133214869 cites W2017778996 @default.
- W2133214869 cites W2026572385 @default.
- W2133214869 cites W2041317903 @default.
- W2133214869 cites W2043606981 @default.
- W2133214869 cites W2080436281 @default.
- W2133214869 cites W2106482859 @default.
- W2133214869 cites W2122342483 @default.
- W2133214869 cites W2124419941 @default.
- W2133214869 cites W2135829152 @default.
- W2133214869 doi "https://doi.org/10.1088/1757-899x/40/1/012041" @default.
- W2133214869 hasPublicationYear "2012" @default.
- W2133214869 type Work @default.
- W2133214869 sameAs 2133214869 @default.
- W2133214869 citedByCount "0" @default.
- W2133214869 crossrefType "journal-article" @default.
- W2133214869 hasAuthorship W2133214869A5008453297 @default.
- W2133214869 hasAuthorship W2133214869A5055054315 @default.
- W2133214869 hasBestOaLocation W21332148691 @default.
- W2133214869 hasConcept C111106434 @default.
- W2133214869 hasConcept C111919701 @default.
- W2133214869 hasConcept C127413603 @default.
- W2133214869 hasConcept C154945302 @default.
- W2133214869 hasConcept C159985019 @default.
- W2133214869 hasConcept C192562407 @default.
- W2133214869 hasConcept C199360897 @default.
- W2133214869 hasConcept C2777904410 @default.
- W2133214869 hasConcept C2778958987 @default.
- W2133214869 hasConcept C41008148 @default.
- W2133214869 hasConcept C50644808 @default.
- W2133214869 hasConcept C78519656 @default.
- W2133214869 hasConcept C98045186 @default.
- W2133214869 hasConceptScore W2133214869C111106434 @default.
- W2133214869 hasConceptScore W2133214869C111919701 @default.
- W2133214869 hasConceptScore W2133214869C127413603 @default.
- W2133214869 hasConceptScore W2133214869C154945302 @default.
- W2133214869 hasConceptScore W2133214869C159985019 @default.
- W2133214869 hasConceptScore W2133214869C192562407 @default.
- W2133214869 hasConceptScore W2133214869C199360897 @default.
- W2133214869 hasConceptScore W2133214869C2777904410 @default.
- W2133214869 hasConceptScore W2133214869C2778958987 @default.
- W2133214869 hasConceptScore W2133214869C41008148 @default.
- W2133214869 hasConceptScore W2133214869C50644808 @default.
- W2133214869 hasConceptScore W2133214869C78519656 @default.
- W2133214869 hasConceptScore W2133214869C98045186 @default.
- W2133214869 hasLocation W21332148691 @default.
- W2133214869 hasOpenAccess W2133214869 @default.
- W2133214869 hasPrimaryLocation W21332148691 @default.
- W2133214869 hasRelatedWork W1589333636 @default.
- W2133214869 hasRelatedWork W1940402529 @default.
- W2133214869 hasRelatedWork W2042989395 @default.
- W2133214869 hasRelatedWork W2061869775 @default.
- W2133214869 hasRelatedWork W2068015797 @default.
- W2133214869 hasRelatedWork W2118233401 @default.
- W2133214869 hasRelatedWork W2326392838 @default.
- W2133214869 hasRelatedWork W2374589080 @default.
- W2133214869 hasRelatedWork W2997950071 @default.
- W2133214869 hasRelatedWork W3128944884 @default.
- W2133214869 hasVolume "40" @default.
- W2133214869 isParatext "false" @default.
- W2133214869 isRetracted "false" @default.
- W2133214869 magId "2133214869" @default.
- W2133214869 workType "article" @default.