Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133231520> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2133231520 abstract "Canonical Correlation Analysis (CCA) is a well-known method for feature extraction and dimension reduction. CCA can simultaneously deal with two sets of data. It makes CCA can be used for feature level fusion. But it suffers the Small Sample Size (SSS) problem. In this paper, a new optimization criterion is presented for overcoming the SSS problem. The optimization problem can be solved analytically by applying the Generalized Singular Value Decomposition (GSVD) technique. We name our method GSVDCCA. But fusion based on CCA sacrifices the class discrimination information in the process of feature fusion. We propose generalized GSVDCCA (GGSVDCCA) fusion algorithm to overcome this limitation. This new method improves correlation criterion function by minimizing the within-class variation to enhance classification performance. From our experiment results on face and palm print database, we clearly find that not only the SSS problem can be effectively solved, but also better recognition performance has been achieved." @default.
- W2133231520 created "2016-06-24" @default.
- W2133231520 creator A5026302133 @default.
- W2133231520 creator A5034434932 @default.
- W2133231520 creator A5039854073 @default.
- W2133231520 creator A5057209439 @default.
- W2133231520 date "2008-01-01" @default.
- W2133231520 modified "2023-10-16" @default.
- W2133231520 title "Generalized Canonical Correlation Analysis Using GSVD" @default.
- W2133231520 cites W1600099814 @default.
- W2133231520 cites W173985074 @default.
- W2133231520 cites W1753844402 @default.
- W2133231520 cites W1965913815 @default.
- W2133231520 cites W1971986776 @default.
- W2133231520 cites W1974097586 @default.
- W2133231520 cites W1976684802 @default.
- W2133231520 cites W1983772724 @default.
- W2133231520 cites W1985852691 @default.
- W2133231520 cites W2025341678 @default.
- W2133231520 cites W2046649434 @default.
- W2133231520 cites W2081863860 @default.
- W2133231520 cites W2088900896 @default.
- W2133231520 cites W2100560442 @default.
- W2133231520 cites W2101578352 @default.
- W2133231520 cites W2116787917 @default.
- W2133231520 cites W2131221462 @default.
- W2133231520 cites W2135073304 @default.
- W2133231520 cites W2146820706 @default.
- W2133231520 cites W2164152532 @default.
- W2133231520 cites W2164583936 @default.
- W2133231520 cites W2798909945 @default.
- W2133231520 cites W3016988317 @default.
- W2133231520 cites W81573328 @default.
- W2133231520 doi "https://doi.org/10.1109/iscsct.2008.31" @default.
- W2133231520 hasPublicationYear "2008" @default.
- W2133231520 type Work @default.
- W2133231520 sameAs 2133231520 @default.
- W2133231520 citedByCount "1" @default.
- W2133231520 crossrefType "proceedings-article" @default.
- W2133231520 hasAuthorship W2133231520A5026302133 @default.
- W2133231520 hasAuthorship W2133231520A5034434932 @default.
- W2133231520 hasAuthorship W2133231520A5039854073 @default.
- W2133231520 hasAuthorship W2133231520A5057209439 @default.
- W2133231520 hasConcept C124101348 @default.
- W2133231520 hasConcept C138885662 @default.
- W2133231520 hasConcept C144024400 @default.
- W2133231520 hasConcept C153180895 @default.
- W2133231520 hasConcept C153874254 @default.
- W2133231520 hasConcept C154945302 @default.
- W2133231520 hasConcept C158525013 @default.
- W2133231520 hasConcept C2776401178 @default.
- W2133231520 hasConcept C2779304628 @default.
- W2133231520 hasConcept C36289849 @default.
- W2133231520 hasConcept C41008148 @default.
- W2133231520 hasConcept C41895202 @default.
- W2133231520 hasConcept C52622490 @default.
- W2133231520 hasConceptScore W2133231520C124101348 @default.
- W2133231520 hasConceptScore W2133231520C138885662 @default.
- W2133231520 hasConceptScore W2133231520C144024400 @default.
- W2133231520 hasConceptScore W2133231520C153180895 @default.
- W2133231520 hasConceptScore W2133231520C153874254 @default.
- W2133231520 hasConceptScore W2133231520C154945302 @default.
- W2133231520 hasConceptScore W2133231520C158525013 @default.
- W2133231520 hasConceptScore W2133231520C2776401178 @default.
- W2133231520 hasConceptScore W2133231520C2779304628 @default.
- W2133231520 hasConceptScore W2133231520C36289849 @default.
- W2133231520 hasConceptScore W2133231520C41008148 @default.
- W2133231520 hasConceptScore W2133231520C41895202 @default.
- W2133231520 hasConceptScore W2133231520C52622490 @default.
- W2133231520 hasLocation W21332315201 @default.
- W2133231520 hasOpenAccess W2133231520 @default.
- W2133231520 hasPrimaryLocation W21332315201 @default.
- W2133231520 hasRelatedWork W1775397219 @default.
- W2133231520 hasRelatedWork W2001391903 @default.
- W2133231520 hasRelatedWork W2016461833 @default.
- W2133231520 hasRelatedWork W2017517155 @default.
- W2133231520 hasRelatedWork W2353697322 @default.
- W2133231520 hasRelatedWork W2382607599 @default.
- W2133231520 hasRelatedWork W2624266381 @default.
- W2133231520 hasRelatedWork W3197541072 @default.
- W2133231520 hasRelatedWork W4312603404 @default.
- W2133231520 hasRelatedWork W1593625692 @default.
- W2133231520 isParatext "false" @default.
- W2133231520 isRetracted "false" @default.
- W2133231520 magId "2133231520" @default.
- W2133231520 workType "article" @default.