Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133289811> ?p ?o ?g. }
- W2133289811 endingPage "2556" @default.
- W2133289811 startingPage "2541" @default.
- W2133289811 abstract "Summary 1. Leaf litter constitutes the major source of organic matter and energy in woodland stream ecosystems. A substantial part of leaf litter entering running waters may be buried in the streambed as a consequence of flooding and sediment movement. While decomposition of leaf litter in surface waters is relatively well understood, its fate when incorporated into river sediments, as well as the involvement of invertebrate and fungal decomposers in such conditions, remain poorly documented. 2. We tested experimentally the hypotheses that the small interstices of the sediment restrict the access of the largest shredders to buried organic matter without compromising that of aquatic hyphomycetes and that fungal decomposers in the hyporheic zone, at least partly, compensate for the role of invertebrate detritivores in the benthic zone. 3. Alder leaves were introduced in a stream either buried in the sediment ( hyporheic ), buried after 2 weeks of exposure at the sediment surface ( benthic‐hyporheic ), or exposed at the sediment surface for the entire experiment ( benthic ). Leaf decomposition was markedly faster on the streambed surface than in the two other treatments (2.1‐ and 2.8‐fold faster than in the benthic‐hyporheic and hyporheic treatments, respectively). 4. Fungal assemblages were generally less diverse in the hyporheic habitat with a few species tending to be relatively favoured by such conditions. Both fungal biomass and sporulation rates were reduced in the hyporheic treatment, with the leaves subject to the benthic‐hyporheic treatment exhibiting an intermediate pattern. The initial 2‐week stage in the benthic habitat shaped the fungal assemblages, even for leaves later subjected to the hyporheic conditions. 5. The abundance and biomass of shredders drastically decreased with burial, except for Leuctra spp., which increased and was by far the most common leaf‐associated taxon in the hyporheic zone. Leuctra spp. was one of the rare shredder taxa displaying morphological characteristics that increased performance within the limited space of sediment interstices. 6. The carbon budgets indicated that the relative contributions of the two main decomposers, shredders and fungi, varied considerably depending on the location within the streambed. While the shredder biomass represented almost 50% of the initial carbon transformed after 80 days in the benthic treatment, its contribution was <0.3% in the hyporheic one and 2.0% in the combined benthic‐hyporheic treatment. In contrast, mycelial and conidial production in the permanently hyporheic environment accounted for 12% of leaf mass loss, i.e. 2–3 times more than in the two other conditions. These results suggest that the role of fungi is particularly important in the hyporheic zone. 7. Our findings indicate that burial within the substratum reduces the litter breakdown rate by limiting the access of both invertebrate and fungal decomposers to leaves. As a consequence, the hyporheic zone may be an important region of organic matter storage in woodland streams and serve as a fungal inoculum reservoir contributing to further dispersal. Through the temporary retention of litter by burial, the hyporheic zone must play a significant role in the carbon metabolism and overall functioning of headwater stream ecosystems." @default.
- W2133289811 created "2016-06-24" @default.
- W2133289811 creator A5008357064 @default.
- W2133289811 creator A5019127186 @default.
- W2133289811 creator A5026021893 @default.
- W2133289811 creator A5085147111 @default.
- W2133289811 creator A5088017498 @default.
- W2133289811 date "2010-08-18" @default.
- W2133289811 modified "2023-10-16" @default.
- W2133289811 title "Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams" @default.
- W2133289811 cites W1582987040 @default.
- W2133289811 cites W175157384 @default.
- W2133289811 cites W184681780 @default.
- W2133289811 cites W184976507 @default.
- W2133289811 cites W1903366349 @default.
- W2133289811 cites W1975082782 @default.
- W2133289811 cites W1975510264 @default.
- W2133289811 cites W1978661389 @default.
- W2133289811 cites W1980755795 @default.
- W2133289811 cites W1988327704 @default.
- W2133289811 cites W1990827736 @default.
- W2133289811 cites W1991295103 @default.
- W2133289811 cites W1993108469 @default.
- W2133289811 cites W1995975392 @default.
- W2133289811 cites W1996214231 @default.
- W2133289811 cites W2003776075 @default.
- W2133289811 cites W2018924294 @default.
- W2133289811 cites W2025292761 @default.
- W2133289811 cites W2025597047 @default.
- W2133289811 cites W2029116827 @default.
- W2133289811 cites W2042433257 @default.
- W2133289811 cites W2043101761 @default.
- W2133289811 cites W2049765178 @default.
- W2133289811 cites W2054126525 @default.
- W2133289811 cites W2064926787 @default.
- W2133289811 cites W2067230474 @default.
- W2133289811 cites W2070905790 @default.
- W2133289811 cites W2098393626 @default.
- W2133289811 cites W2103343574 @default.
- W2133289811 cites W2105244499 @default.
- W2133289811 cites W2105366413 @default.
- W2133289811 cites W2110295930 @default.
- W2133289811 cites W2118301067 @default.
- W2133289811 cites W2129688460 @default.
- W2133289811 cites W2133564104 @default.
- W2133289811 cites W2135180133 @default.
- W2133289811 cites W2152910722 @default.
- W2133289811 cites W2156176806 @default.
- W2133289811 cites W2159915004 @default.
- W2133289811 cites W2264083660 @default.
- W2133289811 cites W2324045235 @default.
- W2133289811 cites W2324647877 @default.
- W2133289811 cites W2331629854 @default.
- W2133289811 cites W2463403451 @default.
- W2133289811 cites W2466325980 @default.
- W2133289811 cites W2467758029 @default.
- W2133289811 cites W2479997975 @default.
- W2133289811 cites W2492987054 @default.
- W2133289811 cites W2493260452 @default.
- W2133289811 cites W2509048831 @default.
- W2133289811 cites W2518989674 @default.
- W2133289811 cites W2607267921 @default.
- W2133289811 cites W4230745787 @default.
- W2133289811 cites W84452838 @default.
- W2133289811 doi "https://doi.org/10.1111/j.1365-2427.2010.02483.x" @default.
- W2133289811 hasPublicationYear "2010" @default.
- W2133289811 type Work @default.
- W2133289811 sameAs 2133289811 @default.
- W2133289811 citedByCount "89" @default.
- W2133289811 countsByYear W21332898112012 @default.
- W2133289811 countsByYear W21332898112013 @default.
- W2133289811 countsByYear W21332898112014 @default.
- W2133289811 countsByYear W21332898112015 @default.
- W2133289811 countsByYear W21332898112016 @default.
- W2133289811 countsByYear W21332898112017 @default.
- W2133289811 countsByYear W21332898112018 @default.
- W2133289811 countsByYear W21332898112019 @default.
- W2133289811 countsByYear W21332898112020 @default.
- W2133289811 countsByYear W21332898112021 @default.
- W2133289811 countsByYear W21332898112022 @default.
- W2133289811 countsByYear W21332898112023 @default.
- W2133289811 crossrefType "journal-article" @default.
- W2133289811 hasAuthorship W2133289811A5008357064 @default.
- W2133289811 hasAuthorship W2133289811A5019127186 @default.
- W2133289811 hasAuthorship W2133289811A5026021893 @default.
- W2133289811 hasAuthorship W2133289811A5085147111 @default.
- W2133289811 hasAuthorship W2133289811A5088017498 @default.
- W2133289811 hasConcept C104170005 @default.
- W2133289811 hasConcept C110872660 @default.
- W2133289811 hasConcept C115540264 @default.
- W2133289811 hasConcept C13474642 @default.
- W2133289811 hasConcept C151730666 @default.
- W2133289811 hasConcept C179992253 @default.
- W2133289811 hasConcept C18903297 @default.
- W2133289811 hasConcept C203174812 @default.
- W2133289811 hasConcept C2777333993 @default.
- W2133289811 hasConcept C2816523 @default.
- W2133289811 hasConcept C2991714712 @default.