Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133311227> ?p ?o ?g. }
- W2133311227 endingPage "6" @default.
- W2133311227 startingPage "6" @default.
- W2133311227 abstract "Geostatistical techniques are now available to account for spatially varying population sizes and spatial patterns in the mapping of disease rates. At first glance, Poisson kriging represents an attractive alternative to increasingly popular Bayesian spatial models in that: 1) it is easier to implement and less CPU intensive, and 2) it accounts for the size and shape of geographical units, avoiding the limitations of conditional auto-regressive (CAR) models commonly used in Bayesian algorithms while allowing for the creation of isopleth risk maps. Both approaches, however, have never been compared in simulation studies, and there is a need to better understand their merits in terms of accuracy and precision of disease risk estimates.Besag, York and Mollie's (BYM) model and Poisson kriging (point and area-to-area implementations) were applied to age-adjusted lung and cervix cancer mortality rates recorded for white females in two contrasted county geographies: 1) state of Indiana that consists of 92 counties of fairly similar size and shape, and 2) four states in the Western US (Arizona, California, Nevada and Utah) forming a set of 118 counties that are vastly different geographical units. The spatial support (i.e. point versus area) has a much smaller impact on the results than the statistical methodology (i.e. geostatistical versus Bayesian models). Differences between methods are particularly pronounced in the Western US dataset: BYM model yields smoother risk surface and prediction variance that changes mainly as a function of the predicted risk, while the Poisson kriging variance increases in large sparsely populated counties. Simulation studies showed that the geostatistical approach yields smaller prediction errors, more precise and accurate probability intervals, and allows a better discrimination between counties with high and low mortality risks. The benefit of area-to-area Poisson kriging increases as the county geography becomes more heterogeneous and when data beyond the adjacent counties are used in the estimation. The trade-off cost for the easier implementation of point Poisson kriging is slightly larger kriging variances, which reduces the precision of the model of uncertainty.Bayesian spatial models are increasingly used by public health officials to map mortality risk from observed rates, a preliminary step towards the identification of areas of excess. More attention should however be paid to the spatial and distributional assumptions underlying the popular BYM model. Poisson kriging offers more flexibility in modeling the spatial structure of the risk and generates less smoothing, reducing the likelihood of missing areas of high risk." @default.
- W2133311227 created "2016-06-24" @default.
- W2133311227 creator A5019977506 @default.
- W2133311227 creator A5076715699 @default.
- W2133311227 date "2008-01-01" @default.
- W2133311227 modified "2023-10-14" @default.
- W2133311227 title "How does Poisson kriging compare to the popular BYM model for mapping disease risks?" @default.
- W2133311227 cites W13328031 @default.
- W2133311227 cites W1516464528 @default.
- W2133311227 cites W1590281652 @default.
- W2133311227 cites W1613756530 @default.
- W2133311227 cites W1864626031 @default.
- W2133311227 cites W1977847832 @default.
- W2133311227 cites W1984252474 @default.
- W2133311227 cites W1990748933 @default.
- W2133311227 cites W2000426316 @default.
- W2133311227 cites W2004014822 @default.
- W2133311227 cites W2007502550 @default.
- W2133311227 cites W2014079126 @default.
- W2133311227 cites W2027544139 @default.
- W2133311227 cites W2036314147 @default.
- W2133311227 cites W2038112825 @default.
- W2133311227 cites W2045027123 @default.
- W2133311227 cites W2052762517 @default.
- W2133311227 cites W2073222618 @default.
- W2133311227 cites W2087825846 @default.
- W2133311227 cites W2098506723 @default.
- W2133311227 cites W2099199107 @default.
- W2133311227 cites W2106812540 @default.
- W2133311227 cites W2112987954 @default.
- W2133311227 cites W2118898434 @default.
- W2133311227 cites W2122228761 @default.
- W2133311227 cites W2129282252 @default.
- W2133311227 cites W2130416410 @default.
- W2133311227 cites W2130761473 @default.
- W2133311227 cites W2137908017 @default.
- W2133311227 cites W2140610420 @default.
- W2133311227 cites W2144184583 @default.
- W2133311227 cites W2144203096 @default.
- W2133311227 cites W2150105594 @default.
- W2133311227 cites W2152359555 @default.
- W2133311227 cites W2154997228 @default.
- W2133311227 cites W2170712385 @default.
- W2133311227 cites W2172264091 @default.
- W2133311227 cites W2298559406 @default.
- W2133311227 cites W23702887 @default.
- W2133311227 cites W2478338686 @default.
- W2133311227 cites W2492698467 @default.
- W2133311227 cites W2506401077 @default.
- W2133311227 cites W2758748901 @default.
- W2133311227 cites W310576696 @default.
- W2133311227 cites W594503987 @default.
- W2133311227 cites W77183160 @default.
- W2133311227 cites W2488395402 @default.
- W2133311227 doi "https://doi.org/10.1186/1476-072x-7-6" @default.
- W2133311227 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2276482" @default.
- W2133311227 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18248676" @default.
- W2133311227 hasPublicationYear "2008" @default.
- W2133311227 type Work @default.
- W2133311227 sameAs 2133311227 @default.
- W2133311227 citedByCount "54" @default.
- W2133311227 countsByYear W21333112272012 @default.
- W2133311227 countsByYear W21333112272013 @default.
- W2133311227 countsByYear W21333112272014 @default.
- W2133311227 countsByYear W21333112272015 @default.
- W2133311227 countsByYear W21333112272016 @default.
- W2133311227 countsByYear W21333112272017 @default.
- W2133311227 countsByYear W21333112272018 @default.
- W2133311227 countsByYear W21333112272019 @default.
- W2133311227 countsByYear W21333112272020 @default.
- W2133311227 countsByYear W21333112272021 @default.
- W2133311227 countsByYear W21333112272022 @default.
- W2133311227 countsByYear W21333112272023 @default.
- W2133311227 crossrefType "journal-article" @default.
- W2133311227 hasAuthorship W2133311227A5019977506 @default.
- W2133311227 hasAuthorship W2133311227A5076715699 @default.
- W2133311227 hasBestOaLocation W21333112271 @default.
- W2133311227 hasConcept C100906024 @default.
- W2133311227 hasConcept C105795698 @default.
- W2133311227 hasConcept C107130276 @default.
- W2133311227 hasConcept C107673813 @default.
- W2133311227 hasConcept C121955636 @default.
- W2133311227 hasConcept C125572338 @default.
- W2133311227 hasConcept C126322002 @default.
- W2133311227 hasConcept C144024400 @default.
- W2133311227 hasConcept C144133560 @default.
- W2133311227 hasConcept C149782125 @default.
- W2133311227 hasConcept C149923435 @default.
- W2133311227 hasConcept C186744025 @default.
- W2133311227 hasConcept C194648359 @default.
- W2133311227 hasConcept C196083921 @default.
- W2133311227 hasConcept C205649164 @default.
- W2133311227 hasConcept C2908647359 @default.
- W2133311227 hasConcept C33923547 @default.
- W2133311227 hasConcept C41008148 @default.
- W2133311227 hasConcept C58640448 @default.
- W2133311227 hasConcept C71924100 @default.
- W2133311227 hasConcept C73269764 @default.