Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133462158> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2133462158 abstract "Let C be a class of distributions over {0, 1}n. A deterministic randomness extractor for C is a function E : {0, 1}n rarr {0, 1}m such that for any X in C the distribution E(X) is statistically close to the uniform A long line of research deals with explicit constructions of such extractors for various classes C while trying to maximize m. In this paper we give a general transformation that transforms a deterministic extractor E that extracts few bits into an extractor E' that extracts almost all the bits present in the source distribution. More precisely, we prove a general theorem saying that if E and C satisfy certain properties, then we can transform E into an extractor E'. Our methods build on (and generalize) a technique of Gabizon, Raz and Shaltiel (FOCS 2004) that present such a transformation for the very restricted class C of oblivious bit-fixing sources. Loosely speaking the high level idea is to find properties of E and C which allow recycling the output of E so that it can be reused to operate on the source An obvious obstacle is that the output of E is correlated with the source Using our transformation we give an explicit construction of a two-source extractor E : {0, 1}n times {0, 1}n rarr {0, 1}m such that for every two independent distributions X1 and X2 over {0, 1}n with min-entropy at least k = (1/2 + delta)n, E(X1, X2) is epsi-close to the uniform distribution on m = 2k - Cdeltalog(1/epsi) bits. This result is optimal except for the precise constant Cdelta and improves previous results by Chor and Goldreich (SICOMP 1988), Vazirani (Combinatorica 1987) and Dodis et al. (RANDOM 2004). We also give explicit constructions of extractors for samplable distributions that extract many bits even out of low-entropy samplable distributions. This improves some previous results by Trevisan and Vadhan (FOCS 2000)" @default.
- W2133462158 created "2016-06-24" @default.
- W2133462158 creator A5062263696 @default.
- W2133462158 date "2006-08-08" @default.
- W2133462158 modified "2023-10-16" @default.
- W2133462158 title "How to Get More Mileage from Randomness Extractors" @default.
- W2133462158 cites W1563159456 @default.
- W2133462158 cites W1976815826 @default.
- W2133462158 cites W1977568210 @default.
- W2133462158 cites W1986686371 @default.
- W2133462158 cites W1998918799 @default.
- W2133462158 cites W2035532007 @default.
- W2133462158 cites W2049182037 @default.
- W2133462158 cites W2051609577 @default.
- W2133462158 cites W2060474153 @default.
- W2133462158 cites W2064561122 @default.
- W2133462158 cites W2065392541 @default.
- W2133462158 cites W2069788171 @default.
- W2133462158 cites W2094975553 @default.
- W2133462158 cites W2099498229 @default.
- W2133462158 cites W2102906040 @default.
- W2133462158 cites W2106110343 @default.
- W2133462158 cites W2110218640 @default.
- W2133462158 cites W2114702110 @default.
- W2133462158 cites W2120164218 @default.
- W2133462158 cites W2122303468 @default.
- W2133462158 cites W2130140688 @default.
- W2133462158 cites W2137178175 @default.
- W2133462158 cites W2143486311 @default.
- W2133462158 cites W2151303208 @default.
- W2133462158 cites W2153543917 @default.
- W2133462158 cites W2157843680 @default.
- W2133462158 cites W2162685042 @default.
- W2133462158 cites W3111890340 @default.
- W2133462158 cites W313923212 @default.
- W2133462158 cites W4231916799 @default.
- W2133462158 doi "https://doi.org/10.1109/ccc.2006.24" @default.
- W2133462158 hasPublicationYear "2006" @default.
- W2133462158 type Work @default.
- W2133462158 sameAs 2133462158 @default.
- W2133462158 citedByCount "21" @default.
- W2133462158 countsByYear W21334621582012 @default.
- W2133462158 countsByYear W21334621582016 @default.
- W2133462158 countsByYear W21334621582017 @default.
- W2133462158 countsByYear W21334621582018 @default.
- W2133462158 countsByYear W21334621582019 @default.
- W2133462158 crossrefType "proceedings-article" @default.
- W2133462158 hasAuthorship W2133462158A5062263696 @default.
- W2133462158 hasConcept C105795698 @default.
- W2133462158 hasConcept C125112378 @default.
- W2133462158 hasConcept C33923547 @default.
- W2133462158 hasConcept C41008148 @default.
- W2133462158 hasConceptScore W2133462158C105795698 @default.
- W2133462158 hasConceptScore W2133462158C125112378 @default.
- W2133462158 hasConceptScore W2133462158C33923547 @default.
- W2133462158 hasConceptScore W2133462158C41008148 @default.
- W2133462158 hasLocation W21334621581 @default.
- W2133462158 hasOpenAccess W2133462158 @default.
- W2133462158 hasPrimaryLocation W21334621581 @default.
- W2133462158 hasRelatedWork W2029712093 @default.
- W2133462158 hasRelatedWork W2402189625 @default.
- W2133462158 hasRelatedWork W2748952813 @default.
- W2133462158 hasRelatedWork W2772321267 @default.
- W2133462158 hasRelatedWork W2899084033 @default.
- W2133462158 hasRelatedWork W2981906196 @default.
- W2133462158 hasRelatedWork W3034924094 @default.
- W2133462158 hasRelatedWork W3036399271 @default.
- W2133462158 hasRelatedWork W3094954546 @default.
- W2133462158 hasRelatedWork W4310560702 @default.
- W2133462158 isParatext "false" @default.
- W2133462158 isRetracted "false" @default.
- W2133462158 magId "2133462158" @default.
- W2133462158 workType "article" @default.