Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133554278> ?p ?o ?g. }
- W2133554278 endingPage "1132" @default.
- W2133554278 startingPage "1124" @default.
- W2133554278 abstract "Article Abstract Background: Medical education is moving toward developing guidelines using the evidence-based approach; however, controlled data are missing for answering complex treatment decisions such as those made during suicide attempts. A new set of statistical techniques called data mining (or machine learning) is being used by different industries to explore complex databases and can be used to explore large clinical databases. Method: The study goal was to reanalyze, using data mining techniques, a published study of which variables predicted psychiatrists†decisions to hospitalize in 509 suicide attempters over the age of 18 years who were assessed in the emergency department. Patients were recruited for the study between 1996 and 1998. Traditional multivariate statistics were compared with data mining techniques to determine variables predicting hospitalization. Results: Five analyses done by psychiatric researchers using traditional statistical techniques classified 72% to 88% of patients correctly. The model developed by researchers with no psychiatric knowledge and employing data mining techniques used 5 variables (drug consumption during the attempt, relief that the attempt was not effective, lack of family support, being a housewife, and family history of suicide attempts) and classified 99% of patients correctly (99% sensitivity and 100% specificity). Conclusions: This reanalysis of a published study fundamentally tries to make the point that these new multivariate techniques, called data mining, can be used to study large clinical databases in psychiatry. Data mining techniques may be used to explore important treatment questions and outcomes in large clinical databases and to help develop guidelines for problems where controlled data are difficult to obtain. New opportunities for good clinical research may be developed by using data mining analyses." @default.
- W2133554278 created "2016-06-24" @default.
- W2133554278 creator A5021690191 @default.
- W2133554278 creator A5045416477 @default.
- W2133554278 creator A5054573901 @default.
- W2133554278 creator A5073341395 @default.
- W2133554278 creator A5074635079 @default.
- W2133554278 creator A5074940440 @default.
- W2133554278 creator A5081001975 @default.
- W2133554278 creator A5082054712 @default.
- W2133554278 creator A5085160573 @default.
- W2133554278 date "2006-07-15" @default.
- W2133554278 modified "2023-10-18" @default.
- W2133554278 title "Using Data Mining to Explore Complex Clinical Decisions" @default.
- W2133554278 cites W1483561500 @default.
- W2133554278 cites W1557365719 @default.
- W2133554278 cites W1833250528 @default.
- W2133554278 cites W1861121911 @default.
- W2133554278 cites W1969383864 @default.
- W2133554278 cites W1973948212 @default.
- W2133554278 cites W1983850209 @default.
- W2133554278 cites W1984256627 @default.
- W2133554278 cites W2000610951 @default.
- W2133554278 cites W2020207275 @default.
- W2133554278 cites W2028004689 @default.
- W2133554278 cites W2029629601 @default.
- W2133554278 cites W2035632382 @default.
- W2133554278 cites W2056292345 @default.
- W2133554278 cites W2056581948 @default.
- W2133554278 cites W2112285948 @default.
- W2133554278 cites W2119479037 @default.
- W2133554278 cites W2134551201 @default.
- W2133554278 cites W2135346934 @default.
- W2133554278 cites W2146768257 @default.
- W2133554278 cites W2148603752 @default.
- W2133554278 cites W2161020777 @default.
- W2133554278 cites W2178913649 @default.
- W2133554278 cites W2294745441 @default.
- W2133554278 cites W2319794630 @default.
- W2133554278 cites W2471182773 @default.
- W2133554278 cites W2919355 @default.
- W2133554278 cites W2966207845 @default.
- W2133554278 cites W2971315030 @default.
- W2133554278 cites W90414499 @default.
- W2133554278 doi "https://doi.org/10.4088/jcp.v67n0716" @default.
- W2133554278 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16889457" @default.
- W2133554278 hasPublicationYear "2006" @default.
- W2133554278 type Work @default.
- W2133554278 sameAs 2133554278 @default.
- W2133554278 citedByCount "52" @default.
- W2133554278 countsByYear W21335542782012 @default.
- W2133554278 countsByYear W21335542782014 @default.
- W2133554278 countsByYear W21335542782015 @default.
- W2133554278 countsByYear W21335542782016 @default.
- W2133554278 countsByYear W21335542782017 @default.
- W2133554278 countsByYear W21335542782018 @default.
- W2133554278 countsByYear W21335542782019 @default.
- W2133554278 countsByYear W21335542782020 @default.
- W2133554278 countsByYear W21335542782021 @default.
- W2133554278 crossrefType "journal-article" @default.
- W2133554278 hasAuthorship W2133554278A5021690191 @default.
- W2133554278 hasAuthorship W2133554278A5045416477 @default.
- W2133554278 hasAuthorship W2133554278A5054573901 @default.
- W2133554278 hasAuthorship W2133554278A5073341395 @default.
- W2133554278 hasAuthorship W2133554278A5074635079 @default.
- W2133554278 hasAuthorship W2133554278A5074940440 @default.
- W2133554278 hasAuthorship W2133554278A5081001975 @default.
- W2133554278 hasAuthorship W2133554278A5082054712 @default.
- W2133554278 hasAuthorship W2133554278A5085160573 @default.
- W2133554278 hasConcept C119857082 @default.
- W2133554278 hasConcept C124101348 @default.
- W2133554278 hasConcept C161584116 @default.
- W2133554278 hasConcept C166735990 @default.
- W2133554278 hasConcept C177264268 @default.
- W2133554278 hasConcept C199360897 @default.
- W2133554278 hasConcept C2522767166 @default.
- W2133554278 hasConcept C2780842732 @default.
- W2133554278 hasConcept C3017944768 @default.
- W2133554278 hasConcept C38180746 @default.
- W2133554278 hasConcept C41008148 @default.
- W2133554278 hasConcept C545542383 @default.
- W2133554278 hasConcept C71924100 @default.
- W2133554278 hasConcept C9357733 @default.
- W2133554278 hasConceptScore W2133554278C119857082 @default.
- W2133554278 hasConceptScore W2133554278C124101348 @default.
- W2133554278 hasConceptScore W2133554278C161584116 @default.
- W2133554278 hasConceptScore W2133554278C166735990 @default.
- W2133554278 hasConceptScore W2133554278C177264268 @default.
- W2133554278 hasConceptScore W2133554278C199360897 @default.
- W2133554278 hasConceptScore W2133554278C2522767166 @default.
- W2133554278 hasConceptScore W2133554278C2780842732 @default.
- W2133554278 hasConceptScore W2133554278C3017944768 @default.
- W2133554278 hasConceptScore W2133554278C38180746 @default.
- W2133554278 hasConceptScore W2133554278C41008148 @default.
- W2133554278 hasConceptScore W2133554278C545542383 @default.
- W2133554278 hasConceptScore W2133554278C71924100 @default.
- W2133554278 hasConceptScore W2133554278C9357733 @default.
- W2133554278 hasIssue "07" @default.