Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133622017> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2133622017 abstract "The task of classifying the semantic relation between two nominals in a sentence is quite challenging due to lack of a large amount of labeled data. Existing models of semantic relation classification were built on either synthetic training data generated from unlabeled data or hand-annotated training data. Meanwhile, previous work showed that the preposition and verb in the sentences indicate important clues to discover the semantic relation between nominals. In this paper we attempt to exploit both labeled and unlabeled data for semantic relation classification under the framework of semi-supervised multi-task learning. Specifically, to improve the generalization performance of a semantic relation classification model, we leverage the information contained in the training signals of multiple related tasks, e.g, prediction of preposition and verb labels. Results on SemEval 2007 task 4 and SemEval 2010 task 8 indicate that semi-supervised multi-task learning method can help semantic relation classification, resulting in comparable or even better performance than the state of art systems in SemEval 2007 task 4." @default.
- W2133622017 created "2016-06-24" @default.
- W2133622017 creator A5012894495 @default.
- W2133622017 creator A5031868292 @default.
- W2133622017 creator A5033269202 @default.
- W2133622017 creator A5057508424 @default.
- W2133622017 creator A5067581467 @default.
- W2133622017 date "2010-12-01" @default.
- W2133622017 modified "2023-09-27" @default.
- W2133622017 title "A Semi-supervised Method for Classification of Semantic Relation between Nominals" @default.
- W2133622017 cites W2060390641 @default.
- W2133622017 cites W2146882220 @default.
- W2133622017 cites W2170563643 @default.
- W2133622017 cites W2172251087 @default.
- W2133622017 cites W2181042685 @default.
- W2133622017 cites W2914746235 @default.
- W2133622017 cites W2069364362 @default.
- W2133622017 doi "https://doi.org/10.1109/ialp.2010.68" @default.
- W2133622017 hasPublicationYear "2010" @default.
- W2133622017 type Work @default.
- W2133622017 sameAs 2133622017 @default.
- W2133622017 citedByCount "0" @default.
- W2133622017 crossrefType "proceedings-article" @default.
- W2133622017 hasAuthorship W2133622017A5012894495 @default.
- W2133622017 hasAuthorship W2133622017A5031868292 @default.
- W2133622017 hasAuthorship W2133622017A5033269202 @default.
- W2133622017 hasAuthorship W2133622017A5057508424 @default.
- W2133622017 hasAuthorship W2133622017A5067581467 @default.
- W2133622017 hasConcept C124101348 @default.
- W2133622017 hasConcept C153083717 @default.
- W2133622017 hasConcept C154945302 @default.
- W2133622017 hasConcept C162324750 @default.
- W2133622017 hasConcept C169760540 @default.
- W2133622017 hasConcept C169900460 @default.
- W2133622017 hasConcept C187736073 @default.
- W2133622017 hasConcept C204321447 @default.
- W2133622017 hasConcept C25343380 @default.
- W2133622017 hasConcept C2776397901 @default.
- W2133622017 hasConcept C2777530160 @default.
- W2133622017 hasConcept C2780451532 @default.
- W2133622017 hasConcept C2988080768 @default.
- W2133622017 hasConcept C41008148 @default.
- W2133622017 hasConcept C44572571 @default.
- W2133622017 hasConcept C51632099 @default.
- W2133622017 hasConcept C86803240 @default.
- W2133622017 hasConceptScore W2133622017C124101348 @default.
- W2133622017 hasConceptScore W2133622017C153083717 @default.
- W2133622017 hasConceptScore W2133622017C154945302 @default.
- W2133622017 hasConceptScore W2133622017C162324750 @default.
- W2133622017 hasConceptScore W2133622017C169760540 @default.
- W2133622017 hasConceptScore W2133622017C169900460 @default.
- W2133622017 hasConceptScore W2133622017C187736073 @default.
- W2133622017 hasConceptScore W2133622017C204321447 @default.
- W2133622017 hasConceptScore W2133622017C25343380 @default.
- W2133622017 hasConceptScore W2133622017C2776397901 @default.
- W2133622017 hasConceptScore W2133622017C2777530160 @default.
- W2133622017 hasConceptScore W2133622017C2780451532 @default.
- W2133622017 hasConceptScore W2133622017C2988080768 @default.
- W2133622017 hasConceptScore W2133622017C41008148 @default.
- W2133622017 hasConceptScore W2133622017C44572571 @default.
- W2133622017 hasConceptScore W2133622017C51632099 @default.
- W2133622017 hasConceptScore W2133622017C86803240 @default.
- W2133622017 hasLocation W21336220171 @default.
- W2133622017 hasOpenAccess W2133622017 @default.
- W2133622017 hasPrimaryLocation W21336220171 @default.
- W2133622017 hasRelatedWork W111777454 @default.
- W2133622017 hasRelatedWork W1429518849 @default.
- W2133622017 hasRelatedWork W1537146566 @default.
- W2133622017 hasRelatedWork W1554184654 @default.
- W2133622017 hasRelatedWork W2033016965 @default.
- W2133622017 hasRelatedWork W2060390641 @default.
- W2133622017 hasRelatedWork W2062046281 @default.
- W2133622017 hasRelatedWork W2078658491 @default.
- W2133622017 hasRelatedWork W2099341132 @default.
- W2133622017 hasRelatedWork W2100134540 @default.
- W2133622017 hasRelatedWork W2136408237 @default.
- W2133622017 hasRelatedWork W2139893985 @default.
- W2133622017 hasRelatedWork W2151170651 @default.
- W2133622017 hasRelatedWork W2152358231 @default.
- W2133622017 hasRelatedWork W2230248553 @default.
- W2133622017 hasRelatedWork W2798583685 @default.
- W2133622017 hasRelatedWork W2911141786 @default.
- W2133622017 hasRelatedWork W3118868277 @default.
- W2133622017 hasRelatedWork W1732746501 @default.
- W2133622017 hasRelatedWork W2069364362 @default.
- W2133622017 isParatext "false" @default.
- W2133622017 isRetracted "false" @default.
- W2133622017 magId "2133622017" @default.
- W2133622017 workType "article" @default.