Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133642590> ?p ?o ?g. }
- W2133642590 endingPage "318" @default.
- W2133642590 startingPage "304" @default.
- W2133642590 abstract "An important issue in ecohydrological research is distribution modelling, aiming at the prediction of species or vegetation type occurrence on the basis of empirical relations with hydrological or hydrogeochemical habitat conditions. In this study, two statistical techniques are evaluated: (i) the widely used multiple logistic regression technique in the generalized linear modelling framework, and (ii) a recently developed machine learning technique called ‘random forests’. The latter is an ensemble learning technique that generates many classification trees and aggregates the individual results. The two different techniques are used to develop distribution models to predict the vegetation type occurrence of 11 groundwater-dependent vegetation types in Belgian lowland valley ecosystems based on spatially distributed measurements of environmental conditions. The spatially distributed data set under investigation consists of 1705 grid cells covering an area of 47.32 ha. After model construction and calibration, both models are applied to independent test data sets using two-fold cross-validation and resulting probabilities of occurrence are used to predict vegetation type distributions within the study area. Predicted vegetation types are compared with observations, and the McNemar test indicates an overall better performance of the random forest model at the 0.001 significance level. Comparison of the modelling results for each individual vegetation type separately by means of the F-measure, which combines precision and recall, also reveals better predictions by the random forest model. Inspection of the probabilities of occurrence of the different vegetation types for each grid cell demonstrates that correct predictions in central areas of homogeneous vegetation sites are based on high probabilities, whereas the confidence decreases towards the margins of these areas. Threshold-independent evaluation of the model accuracy by means of the area under the receiver operating characteristic (ROC) curves confirms good performances of both models, but with higher values for the random forest model. Therefore, the incorporation of the random forest technique in distribution models has the ability to lead to better model performances." @default.
- W2133642590 created "2016-06-24" @default.
- W2133642590 creator A5006595695 @default.
- W2133642590 creator A5012437460 @default.
- W2133642590 creator A5040240998 @default.
- W2133642590 creator A5043679739 @default.
- W2133642590 creator A5056651889 @default.
- W2133642590 creator A5056787306 @default.
- W2133642590 creator A5068472419 @default.
- W2133642590 date "2007-10-01" @default.
- W2133642590 modified "2023-10-03" @default.
- W2133642590 title "Random forests as a tool for ecohydrological distribution modelling" @default.
- W2133642590 cites W1517763382 @default.
- W2133642590 cites W1520812622 @default.
- W2133642590 cites W1591200513 @default.
- W2133642590 cites W1838542636 @default.
- W2133642590 cites W1985414380 @default.
- W2133642590 cites W1990653740 @default.
- W2133642590 cites W1992112776 @default.
- W2133642590 cites W1996762101 @default.
- W2133642590 cites W2010138360 @default.
- W2133642590 cites W2018881432 @default.
- W2133642590 cites W2027541734 @default.
- W2133642590 cites W2032890895 @default.
- W2133642590 cites W2044123645 @default.
- W2133642590 cites W2045002121 @default.
- W2133642590 cites W2048905139 @default.
- W2133642590 cites W2053154970 @default.
- W2133642590 cites W2053885782 @default.
- W2133642590 cites W2057265017 @default.
- W2133642590 cites W2059877452 @default.
- W2133642590 cites W2079018504 @default.
- W2133642590 cites W2081942075 @default.
- W2133642590 cites W2095240644 @default.
- W2133642590 cites W2096152168 @default.
- W2133642590 cites W2101711129 @default.
- W2133642590 cites W2103043899 @default.
- W2133642590 cites W2114006057 @default.
- W2133642590 cites W2115268776 @default.
- W2133642590 cites W2120000166 @default.
- W2133642590 cites W2120160157 @default.
- W2133642590 cites W2123337039 @default.
- W2133642590 cites W2130695471 @default.
- W2133642590 cites W2135293965 @default.
- W2133642590 cites W2139416101 @default.
- W2133642590 cites W2139857790 @default.
- W2133642590 cites W2142635246 @default.
- W2133642590 cites W2145427519 @default.
- W2133642590 cites W2155632266 @default.
- W2133642590 cites W2162349018 @default.
- W2133642590 cites W2167277498 @default.
- W2133642590 cites W2169536548 @default.
- W2133642590 cites W226176070 @default.
- W2133642590 cites W2911964244 @default.
- W2133642590 cites W317901007 @default.
- W2133642590 cites W4251036056 @default.
- W2133642590 cites W4252684946 @default.
- W2133642590 doi "https://doi.org/10.1016/j.ecolmodel.2007.05.011" @default.
- W2133642590 hasPublicationYear "2007" @default.
- W2133642590 type Work @default.
- W2133642590 sameAs 2133642590 @default.
- W2133642590 citedByCount "299" @default.
- W2133642590 countsByYear W21336425902012 @default.
- W2133642590 countsByYear W21336425902013 @default.
- W2133642590 countsByYear W21336425902014 @default.
- W2133642590 countsByYear W21336425902015 @default.
- W2133642590 countsByYear W21336425902016 @default.
- W2133642590 countsByYear W21336425902017 @default.
- W2133642590 countsByYear W21336425902018 @default.
- W2133642590 countsByYear W21336425902019 @default.
- W2133642590 countsByYear W21336425902020 @default.
- W2133642590 countsByYear W21336425902021 @default.
- W2133642590 countsByYear W21336425902022 @default.
- W2133642590 countsByYear W21336425902023 @default.
- W2133642590 crossrefType "journal-article" @default.
- W2133642590 hasAuthorship W2133642590A5006595695 @default.
- W2133642590 hasAuthorship W2133642590A5012437460 @default.
- W2133642590 hasAuthorship W2133642590A5040240998 @default.
- W2133642590 hasAuthorship W2133642590A5043679739 @default.
- W2133642590 hasAuthorship W2133642590A5056651889 @default.
- W2133642590 hasAuthorship W2133642590A5056787306 @default.
- W2133642590 hasAuthorship W2133642590A5068472419 @default.
- W2133642590 hasConcept C110121322 @default.
- W2133642590 hasConcept C110872660 @default.
- W2133642590 hasConcept C119857082 @default.
- W2133642590 hasConcept C134306372 @default.
- W2133642590 hasConcept C169258074 @default.
- W2133642590 hasConcept C18903297 @default.
- W2133642590 hasConcept C33923547 @default.
- W2133642590 hasConcept C39432304 @default.
- W2133642590 hasConcept C41008148 @default.
- W2133642590 hasConcept C69514717 @default.
- W2133642590 hasConcept C86803240 @default.
- W2133642590 hasConceptScore W2133642590C110121322 @default.
- W2133642590 hasConceptScore W2133642590C110872660 @default.
- W2133642590 hasConceptScore W2133642590C119857082 @default.
- W2133642590 hasConceptScore W2133642590C134306372 @default.
- W2133642590 hasConceptScore W2133642590C169258074 @default.