Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133670222> ?p ?o ?g. }
- W2133670222 abstract "We present a set of approximation results for several covering problems in dense graphs. These results show that for several problems, classical algorithms with constant approximation ratios can be analyzed in a finer way, and provide better constant approximation ratios under some density constraints. In particular, we show that the maximal matching heuristic approximates VERTEX COVER (VC) and MINIMUM MAXIMAL MATCHING (MMM) with a constant ratio strictly smaller than 2 when the proportion of edges present in the graph (weak density) is at least 3/4, or when the normalized minimum degree (strong density) is at least 1/2. We also show that this result can be improved by a greedy algorithm which provides a constant ratio smaller than 2 when the weak density is at least 1/2. We also provide tight families of graphs for all these approximation ratios. We then looked at several algorithms from the literature for VC and SET COVER (SC). We present a unified and critical approach to the Karpinski/Zelikovsky, Imamura/Iwama and Bar-Yehuda/Kehat algorithms, identifying the general the general scheme underlying these algorithms.Finally, we look at the CONNECTED VERTEX COVER (CVC) problem,for which we proposed new approximation results in dense graphs. We first analyze Carla Savage's algorithm, then a new variant of the Karpinski-Zelikovsky algorithm. Our results show that these algorithms provide the same approximation ratios for CVC as the maximal matching heuristic and the Karpinski-Zelikovsky algorithm did for VC. We provide tight examples for the ratios guaranteed by both algorithms. We also introduce a new invariant, the price of connectivity of defined as the ratio between the optimal solutions of CVC and VC, and showed a nearly tight upper bound on its value as a function of the weak density. Our last chapter discusses software aspects, and presents the use of the GRAPHEDRON software in the framework of approximation algorithms, as well as our contributions to the development of this system./Nous presentons un ensemble de resultats d'approximation pour plusieurs problemes de couverture dans les graphes denses. Ces resultats montrent que pour plusieurs problemes, des algorithmes classiques a facteur d'approximation constant peuvent etre analyses de maniere plus fine, et garantissent de meilleurs facteurs d'aproximation constants sous certaines contraintes de densite. Nous montrons en particulier que l'heuristique du matching maximal approxime les problemes VERTEX COVER (VC) et MINIMUM MAXIMAL MATCHING (MMM) avec un facteur constant inferieur a 2 quand la proportion d'aretes presentes dans le graphe (densite faible) est superieure a 3/4 ou quand le degre minimum normalise (densite forte) est superieur a 1/2. Nous montrons egalement que ce resultat peut etre ameliore par un algorithme de type GREEDY, qui fournit un facteur constant inferieur a 2 pour des densites faibles superieures a 1/2. Nous donnons egalement des familles de graphes extremaux pour nos facteurs d'approximation. Nous nous somme ensuite interesses a plusieurs algorithmes de la litterature pour les problemes VC et SET COVER (SC). Nous avons presente une approche unifiee et critique des algorithmes de Karpinski-Zelikovsky, Imamura-Iwama, et Bar-Yehuda-Kehat, identifiant un schema general dans lequel s'integrent ces algorithmes.Nous nous sommes finalement interesses au probleme CONNECTED VERTEX COVER (CVC), pour lequel nous avons propose de nouveaux resultats d'approximation dans les graphes denses, au travers de l'algorithme de Carla Savage d'une part, et d'une nouvelle variante de l'algorithme de Karpinski-Zelikovsky d'autre part. Ces resultats montrent que nous pouvons obtenir pour CVC les memes facteurs d'approximation que ceux obtenus pour VC a l'aide de l'heuristique du matching maximal et de l'algorithme de Karpinski-Zelikovsky. Nous montrons egalement des familles de graphes extremaux pour les ratios garantis par ces deux algorithmes. Nous avons egalement etudie un nouvel invariant, le cout de connectivite de VC, defini comme le rapport entre les solutions optimales de CVC et de VC, et montre une borne superieure sur sa valeur en fonction de la densite faible. Notre dernier chapitre discute d'aspects logiciels, et presente l'utilisation du logiciel GRAPHEDRON dans le cadre des algorithmes d'approximation, ainsi que nos contributions au developpement du logiciel." @default.
- W2133670222 created "2016-06-24" @default.
- W2133670222 creator A5011369568 @default.
- W2133670222 creator A5069915116 @default.
- W2133670222 date "2009-03-06" @default.
- W2133670222 modified "2023-09-25" @default.
- W2133670222 title "Approximation algorithms for covering problems in dense graphs" @default.
- W2133670222 cites W118210480 @default.
- W2133670222 cites W1488947681 @default.
- W2133670222 cites W1491961545 @default.
- W2133670222 cites W1524356573 @default.
- W2133670222 cites W1525726608 @default.
- W2133670222 cites W1562017546 @default.
- W2133670222 cites W1566493102 @default.
- W2133670222 cites W1572367367 @default.
- W2133670222 cites W1572977974 @default.
- W2133670222 cites W1585122964 @default.
- W2133670222 cites W1629870200 @default.
- W2133670222 cites W189633613 @default.
- W2133670222 cites W1971749164 @default.
- W2133670222 cites W1988133548 @default.
- W2133670222 cites W1990313671 @default.
- W2133670222 cites W1999032440 @default.
- W2133670222 cites W2011039300 @default.
- W2133670222 cites W2013415302 @default.
- W2133670222 cites W2019578639 @default.
- W2133670222 cites W2020112047 @default.
- W2133670222 cites W2022901346 @default.
- W2133670222 cites W2028738060 @default.
- W2133670222 cites W2029948740 @default.
- W2133670222 cites W2030970869 @default.
- W2133670222 cites W2032950184 @default.
- W2133670222 cites W2036265926 @default.
- W2133670222 cites W2040924621 @default.
- W2133670222 cites W2041605864 @default.
- W2133670222 cites W2047424666 @default.
- W2133670222 cites W2048299263 @default.
- W2133670222 cites W2052336334 @default.
- W2133670222 cites W2062366051 @default.
- W2133670222 cites W2064600658 @default.
- W2133670222 cites W2065161629 @default.
- W2133670222 cites W2075346653 @default.
- W2133670222 cites W2077783414 @default.
- W2133670222 cites W2083165612 @default.
- W2133670222 cites W2088188524 @default.
- W2133670222 cites W2097286222 @default.
- W2133670222 cites W2101439434 @default.
- W2133670222 cites W2106841911 @default.
- W2133670222 cites W2110836275 @default.
- W2133670222 cites W2120358419 @default.
- W2133670222 cites W2121361530 @default.
- W2133670222 cites W2126479983 @default.
- W2133670222 cites W2128024934 @default.
- W2133670222 cites W2136457981 @default.
- W2133670222 cites W2137118456 @default.
- W2133670222 cites W2143091044 @default.
- W2133670222 cites W2143698439 @default.
- W2133670222 cites W2143996311 @default.
- W2133670222 cites W2156760067 @default.
- W2133670222 cites W2157054705 @default.
- W2133670222 cites W2163322487 @default.
- W2133670222 cites W2296656187 @default.
- W2133670222 cites W2402012677 @default.
- W2133670222 cites W2569006230 @default.
- W2133670222 cites W2592631749 @default.
- W2133670222 cites W2611804663 @default.
- W2133670222 cites W2799004609 @default.
- W2133670222 cites W3043081082 @default.
- W2133670222 cites W3128825273 @default.
- W2133670222 cites W1525605957 @default.
- W2133670222 cites W2082868046 @default.
- W2133670222 cites W2891212941 @default.
- W2133670222 hasPublicationYear "2009" @default.
- W2133670222 type Work @default.
- W2133670222 sameAs 2133670222 @default.
- W2133670222 citedByCount "6" @default.
- W2133670222 countsByYear W21336702222012 @default.
- W2133670222 countsByYear W21336702222013 @default.
- W2133670222 countsByYear W21336702222014 @default.
- W2133670222 countsByYear W21336702222015 @default.
- W2133670222 crossrefType "journal-article" @default.
- W2133670222 hasAuthorship W2133670222A5011369568 @default.
- W2133670222 hasAuthorship W2133670222A5069915116 @default.
- W2133670222 hasConcept C100808899 @default.
- W2133670222 hasConcept C105795698 @default.
- W2133670222 hasConcept C11413529 @default.
- W2133670222 hasConcept C114614502 @default.
- W2133670222 hasConcept C118615104 @default.
- W2133670222 hasConcept C122818955 @default.
- W2133670222 hasConcept C126255220 @default.
- W2133670222 hasConcept C127413603 @default.
- W2133670222 hasConcept C132525143 @default.
- W2133670222 hasConcept C148764684 @default.
- W2133670222 hasConcept C165064840 @default.
- W2133670222 hasConcept C173801870 @default.
- W2133670222 hasConcept C177264268 @default.
- W2133670222 hasConcept C199360897 @default.
- W2133670222 hasConcept C2777027219 @default.
- W2133670222 hasConcept C2780428219 @default.
- W2133670222 hasConcept C33923547 @default.