Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133861842> ?p ?o ?g. }
- W2133861842 endingPage "38" @default.
- W2133861842 startingPage "1" @default.
- W2133861842 abstract "A large number of human psychophysical results have been successfully explained in recent years using Bayesian models. However, the neural implementation of such models remains largely unclear. In this article, we show that a network architecture commonly used to model the cerebral cortex can implement Bayesian inference for an arbitrary hidden Markov model. We illustrate the approach using an orientation discrimination task and a visual motion detection task. In the case of orientation discrimination, we show that the model network can infer the posterior distribution over orientations and correctly estimate stimulus orientation in the presence of significant noise. In the case of motion detection, we show that the resulting model network exhibits direction selectivity and correctly computes the posterior probabilities over motion direction and position. When used to solve the well-known random dots motion discrimination task, the model generates responses that mimic the activities of evidence-accumulating neurons in cortical areas LIP and FEF. The framework we introduce posits a new interpretation of cortical activities in terms of log posterior probabilities of stimuli occurring in the natural world." @default.
- W2133861842 created "2016-06-24" @default.
- W2133861842 creator A5002759219 @default.
- W2133861842 date "2004-01-01" @default.
- W2133861842 modified "2023-10-18" @default.
- W2133861842 title "Bayesian Computation in Recurrent Neural Circuits" @default.
- W2133861842 cites W1488451997 @default.
- W2133861842 cites W1503602982 @default.
- W2133861842 cites W1536990343 @default.
- W2133861842 cites W1570751785 @default.
- W2133861842 cites W1785117108 @default.
- W2133861842 cites W1975087331 @default.
- W2133861842 cites W1981814724 @default.
- W2133861842 cites W1985162039 @default.
- W2133861842 cites W1990326334 @default.
- W2133861842 cites W1994841627 @default.
- W2133861842 cites W1997173667 @default.
- W2133861842 cites W2007058889 @default.
- W2133861842 cites W2007857129 @default.
- W2133861842 cites W2010705953 @default.
- W2133861842 cites W2013239224 @default.
- W2133861842 cites W2026521631 @default.
- W2133861842 cites W2026799324 @default.
- W2133861842 cites W2032677875 @default.
- W2133861842 cites W2051105882 @default.
- W2133861842 cites W2053315601 @default.
- W2133861842 cites W2080632618 @default.
- W2133861842 cites W2095087224 @default.
- W2133861842 cites W2098086734 @default.
- W2133861842 cites W2098580305 @default.
- W2133861842 cites W2099277959 @default.
- W2133861842 cites W2105594594 @default.
- W2133861842 cites W2106884367 @default.
- W2133861842 cites W2107886772 @default.
- W2133861842 cites W2119885245 @default.
- W2133861842 cites W2122066429 @default.
- W2133861842 cites W2126429644 @default.
- W2133861842 cites W2136582516 @default.
- W2133861842 cites W2139882711 @default.
- W2133861842 cites W2144095870 @default.
- W2133861842 cites W2144460001 @default.
- W2133861842 cites W2146368230 @default.
- W2133861842 cites W2148596731 @default.
- W2133861842 cites W2148848065 @default.
- W2133861842 cites W2150052800 @default.
- W2133861842 cites W2150367061 @default.
- W2133861842 cites W2151103178 @default.
- W2133861842 cites W2157518752 @default.
- W2133861842 cites W2167809052 @default.
- W2133861842 cites W2168815228 @default.
- W2133861842 cites W2170478537 @default.
- W2133861842 cites W64652264 @default.
- W2133861842 doi "https://doi.org/10.1162/08997660460733976" @default.
- W2133861842 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15006021" @default.
- W2133861842 hasPublicationYear "2004" @default.
- W2133861842 type Work @default.
- W2133861842 sameAs 2133861842 @default.
- W2133861842 citedByCount "232" @default.
- W2133861842 countsByYear W21338618422012 @default.
- W2133861842 countsByYear W21338618422013 @default.
- W2133861842 countsByYear W21338618422014 @default.
- W2133861842 countsByYear W21338618422015 @default.
- W2133861842 countsByYear W21338618422016 @default.
- W2133861842 countsByYear W21338618422017 @default.
- W2133861842 countsByYear W21338618422018 @default.
- W2133861842 countsByYear W21338618422019 @default.
- W2133861842 countsByYear W21338618422020 @default.
- W2133861842 countsByYear W21338618422021 @default.
- W2133861842 countsByYear W21338618422022 @default.
- W2133861842 countsByYear W21338618422023 @default.
- W2133861842 crossrefType "journal-article" @default.
- W2133861842 hasAuthorship W2133861842A5002759219 @default.
- W2133861842 hasConcept C107673813 @default.
- W2133861842 hasConcept C119857082 @default.
- W2133861842 hasConcept C153180895 @default.
- W2133861842 hasConcept C154945302 @default.
- W2133861842 hasConcept C15744967 @default.
- W2133861842 hasConcept C160234255 @default.
- W2133861842 hasConcept C16345878 @default.
- W2133861842 hasConcept C169760540 @default.
- W2133861842 hasConcept C207201462 @default.
- W2133861842 hasConcept C23224414 @default.
- W2133861842 hasConcept C2524010 @default.
- W2133861842 hasConcept C2776214188 @default.
- W2133861842 hasConcept C2779345533 @default.
- W2133861842 hasConcept C33923547 @default.
- W2133861842 hasConcept C3832189 @default.
- W2133861842 hasConcept C41008148 @default.
- W2133861842 hasConcept C50644808 @default.
- W2133861842 hasConcept C57830394 @default.
- W2133861842 hasConceptScore W2133861842C107673813 @default.
- W2133861842 hasConceptScore W2133861842C119857082 @default.
- W2133861842 hasConceptScore W2133861842C153180895 @default.
- W2133861842 hasConceptScore W2133861842C154945302 @default.
- W2133861842 hasConceptScore W2133861842C15744967 @default.
- W2133861842 hasConceptScore W2133861842C160234255 @default.
- W2133861842 hasConceptScore W2133861842C16345878 @default.
- W2133861842 hasConceptScore W2133861842C169760540 @default.