Matches in SemOpenAlex for { <https://semopenalex.org/work/W2134046539> ?p ?o ?g. }
- W2134046539 endingPage "107" @default.
- W2134046539 startingPage "85" @default.
- W2134046539 abstract "Global correlations of Precambrian stratigraphic successions can be hampered by the coarse resolution of biostratigraphic and chemostratigraphic records, and by the scarcity of reliable U–Pb zircon age constraints. The development of the Re (rhenium)–Os (osmium) radioisotope system as an accurate deposition-age geochronometer for organic-rich sedimentary rocks (e.g. black shales) holds great potential for an improved radiometric calibration of the Precambrian rock record. Here, we review Re–Os isotope data obtained for Precambrian black shales and revisit the discrepancy in Re–Os ages for the Neoproterozoic Aralka Formation (central Australia). In addition, we introduce new Re–Os isotope data for the Late Neoproterozoic Doushantuo Formation (South China) that highlights the necessity of a rigorous sampling protocol for depositional age determinations. Improvements in sampling and analytical methodologies have permitted the determination of precise ages (,1%, 2s) from Late Neoproterozoic to Late Archaean shales. Whole-rock digestion using a Cr–H2SO4 solution minimizes the release of detrital Re and Os from shale matrices, and selectively attacks organic matter that hosts hydrogenous Re and Os. The Re–Os system in organic-rich sedimentary rocks appears to be robust during hydrocarbon maturation and up to the onset of lowermost greenschist facies metamorphism, but post-depositional hydrothermal fluid flow can result in scattered Re–Os isotope data. The Re–Os black shale geochronometer should find utility for constraining the age of a diverse range of Precambrian geological phenomena. In addition, the initial Os/Os composition determined from Re–Os isochron regressions serves as a tracer for the Os isotope composition of Precambrian sea water. Accurately determining the depositional ages of sedimentary rocks has proven extremely difficult to accomplish using the conventional long-lived radioisotope systems (e.g. Rb–Sr, Sm–Nd, U–Pb, K–Ar). The U–Pb SHRIMP (sensitive highresolution ion microprobe) dating of detrital minerals such as zircon has proven useful for provenance studies and constraining the maximum depositional age (e.g. Bingen et al. 2005). However, authigenic minerals (e.g. apatite, glauconite, illite, K-feldspar, monazite) generally yield diagenetic ages that are variably younger than the depositional age of the host sedimentary rock. Diagenetic age determinations on authigenic minerals are also hampered by low closure temperatures of the applied radioisotope system, resulting in a high susceptibility to thermal resetting even during relatively low-temperature hydrothermal alteration or metamorphism (Dickin 2005). Diagenetic xenotime is found in a wide variety of siliciclastic and volcaniclastic rocks, and represents a robust U–Pb geochronometer with the potential for resolving complex geological histories within sedimentary basins (Rasmussen 2005). However, U–Pb xenotime dates also reflect the timing of diagenesis rather than deposition. In some cases, Pb/Pb ages from carbonates (e.g. Moorbath et al. 1987; Woodhead et al. 1998; Babinski et al. 2007) and phosphorites (Barfod et al. 2002; Chen et al. 2004) may yield depositional or early diagenetic ages using well-preserved material. However, Pb/Pb ages may be erroneously young or old owing to diagenetic or metamorphic recrystallization and detrital inheritance, respectively, or age information may be lost altogether due to post-depositional mobility of U and Pb (Rasmussen 2005). Currently, the most reliable method of constraining the depositional age of sedimentary rocks is by U–Pb zircon dating of interbedded tuff horizons. In the case of Phanerozoic sedimentary basins, such U–Pb ages can be used to calibrate highresolution Phanerozoic biostratigraphic, chemostratigraphic and magnetostratigraphic records, thereby facilitating regional and global correlations of stratigraphic successions (e.g. Gradstein et al. 2004). However, the generally coarse resolution of these From: CRAIG, J., THUROW, J., THUSU, B., WHITHAM, A. & ABUTARRUMA, Y. (eds) Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. Geological Society, London, Special Publications, 326, 85–107. DOI: 10.1144/SP326.5 0305-8719/09/$15.00 # The Geological Society of London 2009. chronostratigraphic methods for the Precambrian rock record does not currently permit this approach, and, in cases where datable ash beds are absent, the ages of Precambrian sedimentary rocks are generally only poorly constrained by radiometric dates from overlying and underlying volcanic or plutonic rocks, and/or cross-cutting plutonic rocks. The development of the Re–Os radioisotope system as a reliable deposition-age geochronometer for organic-rich sedimentary rocks (ORS; total organic carbon (TOC) 0.5%) like black shales (Ravizza & Turekian 1989; Cohen et al. 1999; Creaser et al. 2002; Selby & Creaser 2003; Kendall et al. 2004) has the potential to alleviate the problems associated with radiometric calibration of the Precambrian sedimentary rock record. Improvements in sampling and analytical methodologies, combined with the high precision of isotope dilution–negative thermal ionization mass spectrometry (ID-NTIMS: Creaser et al. 1991; Volkening et al. 1991; Walczyk et al. 1991), have made it possible to obtain a Re–Os age for black shale with a precision of better than +1% (2s), with the absolute uncertainty comparable in some cases to the uncertainties on U–Pb ages derived from SHRIMP or laser ablation MC-ICP-MS (multicollectorinductively coupled plasma-mass spectrometry) analyses of zircons from tuffaceous beds (e.g. Kendall et al. 2004, 2006; Selby & Creaser 2005a; Anbar et al. 2007; Creaser & Stasiuk 2007). Recently, the Re–Os ORS geochronometer has been successfully applied to studies regarding geological timescale calibration (Devonian– Mississippian boundary: Selby & Creaser 2005a), the timing of Proterozoic glaciation (Hannah et al. 2004; Kendall et al. 2004, 2006; Azmy et al. 2008), the Earth’s early history of atmosphere and ocean oxygenation (Hannah et al. 2004; Anbar et al. 2007), and sedimentary basin analysis (Hannah et al. 2006; Creaser & Stasiuk 2007; Kendall et al. 2009a). In addition, the initial Os/Os value (IOs) from Re–Os isochron regressions has served as a tracer for the Os isotope composition of Phanerozoic sea water (Cohen et al. 1999, 2004; Creaser et al. 2002; Selby & Creaser 2003; Cohen 2004; Cohen & Coe 2007; Selby 2007). Here, we review recent applications of Re–Os geochronology to Precambrian ORS, and demonstrate how careful sampling and analytical methodologies are essential for precise and accurate depositional age determinations. The Re–Os system in ORS: a deposition-age geochronometer and sea-water Os isotope tracer In addition to being siderophilic and chalcophilic (e.g. Shirey & Walker 1998), Re and Os are also organophilic and redox-sensitive (Ravizza et al. 1991; Ravizza & Turekian 1992; Colodner et al. 1993; Crusius et al. 1996; Levasseur et al. 1998; Selby & Creaser 2003, 2005b; Selby et al. 2005, 2007a). This geochemical behaviour of Re and Os in Earth surface environments enables the Re–Os isotope system to be used as a deposition-age geochronometer for ORS and a tracer of palaeo-sea-water Os isotope composition. Under oxidizing atmospheric conditions, Re is transported to the oceans primarily by rivers (as the highly soluble perrhenate anion ReO4 : Colodner et al. 1993). Rhenium is removed rapidly from reducing pore waters at centimetres to tens of centimetres below the sediment–water interface, and is sequestered into suboxic, anoxic and euxinic sediments (Colodner et al. 1993; Crusius et al. 1996; Morford & Emerson 1999; Nameroff et al. 2002; Sundby et al. 2004; Morford et al. 2005). Removal of Re from pore waters occurs by reductive capture (ReO4 2 is reduced to Re: Colodner et al. 1993), the rate of which is controlled by slow precipitation kinetics (Crusius & Thomson 2000; Sundby et al. 2004). The Os/Os isotopic compositionofpresentday sea water is almost homogenous (c. 1.06: Sharma et al. 1997; Levasseur et al. 1998; Burton et al. 1999; Woodhouse et al. 1999; PeuckerEhrenbrink & Ravizza 2000), consistent with an Os sea-water residence time of approximately 10 years (Oxburgh 1998, 2001; Levasseur et al. 1999). The dominant source of present-day seawater Os (c. 70–80%) is from the weathering of the upper continental crust (McDaniel et al. 2004). Average Os/Os for the currently eroding upper continental crust and riverine inputs are between 1.0 and 1.4 (Esser & Turekian 1993; Peucker-Ehrenbrink & Jahn 2001; Hattori et al. 2003) and approximately 1.5 (with an uncertainty of .20%: Levasseur et al. 1999), respectively. The remainder of the present-day marine Os budget is derived from extraterrestrial cosmic dust (Peucker-Ehrenbrink 1996) and the lowand hightemperature hydrothermal alteration of oceanic crust and peridotites (Ravizza et al. 1996; Sharma et al. 2000, 2007; Cave et al. 2003). Both sources contribute unradiogenic Os/Os to sea water (0.126–0.130: Becker et al. 2001; Meisel et al. 1996, 2001; Walker et al. 2002a, b). Dissolved Os is probably present in sea water as an octavalent oxyanion (e.g. HOsO5 , H3OsO6 ). Osmium is removed into organic-rich sediments in direct association with organic matter (Levasseur et al. 1998) and/or is rapidly removed to organic-rich sediments first as Os (IV), and then is further reduced to Os (III) by organic complexation (Yamashita et al. 2007). Osmium removal from sea water into reducing sediments may occur below the depth of Re enrichment (Poirer 2006). B. KENDALL ET AL. 86" @default.
- W2134046539 created "2016-06-24" @default.
- W2134046539 creator A5051003403 @default.
- W2134046539 creator A5081959981 @default.
- W2134046539 creator A5083732449 @default.
- W2134046539 date "2009-01-01" @default.
- W2134046539 modified "2023-10-16" @default.
- W2134046539 title "<sup>187</sup> Re- <sup>187</sup> Os geochronology of Precambrian organic-rich sedimentary rocks" @default.
- W2134046539 cites W1498344923 @default.
- W2134046539 cites W1534655135 @default.
- W2134046539 cites W153578786 @default.
- W2134046539 cites W1576813412 @default.
- W2134046539 cites W1631820701 @default.
- W2134046539 cites W1746404291 @default.
- W2134046539 cites W1832379973 @default.
- W2134046539 cites W1960006776 @default.
- W2134046539 cites W1963487805 @default.
- W2134046539 cites W1965658808 @default.
- W2134046539 cites W1966526622 @default.
- W2134046539 cites W1972538938 @default.
- W2134046539 cites W1972857233 @default.
- W2134046539 cites W1974653767 @default.
- W2134046539 cites W1975383369 @default.
- W2134046539 cites W1976853260 @default.
- W2134046539 cites W1978025159 @default.
- W2134046539 cites W1979223069 @default.
- W2134046539 cites W1980372107 @default.
- W2134046539 cites W1981244617 @default.
- W2134046539 cites W1982065538 @default.
- W2134046539 cites W1982847079 @default.
- W2134046539 cites W1982946410 @default.
- W2134046539 cites W1986293631 @default.
- W2134046539 cites W1987182523 @default.
- W2134046539 cites W1987314508 @default.
- W2134046539 cites W1987421662 @default.
- W2134046539 cites W1988496196 @default.
- W2134046539 cites W1988806251 @default.
- W2134046539 cites W1990004051 @default.
- W2134046539 cites W1993975655 @default.
- W2134046539 cites W1994160943 @default.
- W2134046539 cites W1996760343 @default.
- W2134046539 cites W1997755538 @default.
- W2134046539 cites W1998680662 @default.
- W2134046539 cites W1999629770 @default.
- W2134046539 cites W1999985630 @default.
- W2134046539 cites W2000089948 @default.
- W2134046539 cites W2000246025 @default.
- W2134046539 cites W2001120387 @default.
- W2134046539 cites W2006549085 @default.
- W2134046539 cites W2006623063 @default.
- W2134046539 cites W2007617314 @default.
- W2134046539 cites W2008519747 @default.
- W2134046539 cites W2009466418 @default.
- W2134046539 cites W2009758922 @default.
- W2134046539 cites W2011250343 @default.
- W2134046539 cites W2011627077 @default.
- W2134046539 cites W2012709229 @default.
- W2134046539 cites W2013753940 @default.
- W2134046539 cites W2017935781 @default.
- W2134046539 cites W2018367205 @default.
- W2134046539 cites W2018436797 @default.
- W2134046539 cites W2018696647 @default.
- W2134046539 cites W2021112336 @default.
- W2134046539 cites W2022175403 @default.
- W2134046539 cites W2023393594 @default.
- W2134046539 cites W2023753492 @default.
- W2134046539 cites W2024484543 @default.
- W2134046539 cites W2024818652 @default.
- W2134046539 cites W2026037730 @default.
- W2134046539 cites W2026668959 @default.
- W2134046539 cites W2026969831 @default.
- W2134046539 cites W2028476972 @default.
- W2134046539 cites W2029872558 @default.
- W2134046539 cites W2030714377 @default.
- W2134046539 cites W2031407581 @default.
- W2134046539 cites W2031839367 @default.
- W2134046539 cites W2034829945 @default.
- W2134046539 cites W2035823366 @default.
- W2134046539 cites W2038083256 @default.
- W2134046539 cites W2039432072 @default.
- W2134046539 cites W2040238923 @default.
- W2134046539 cites W2040269188 @default.
- W2134046539 cites W2043631843 @default.
- W2134046539 cites W2047314228 @default.
- W2134046539 cites W2049198600 @default.
- W2134046539 cites W2050673994 @default.
- W2134046539 cites W2053467447 @default.
- W2134046539 cites W2054419733 @default.
- W2134046539 cites W2054707862 @default.
- W2134046539 cites W2054861741 @default.
- W2134046539 cites W2055210018 @default.
- W2134046539 cites W2055499138 @default.
- W2134046539 cites W2055862951 @default.
- W2134046539 cites W2056649644 @default.
- W2134046539 cites W2056826009 @default.
- W2134046539 cites W2059589790 @default.
- W2134046539 cites W2061010681 @default.
- W2134046539 cites W2061063686 @default.