Matches in SemOpenAlex for { <https://semopenalex.org/work/W2134127584> ?p ?o ?g. }
- W2134127584 endingPage "55" @default.
- W2134127584 startingPage "46" @default.
- W2134127584 abstract "Canonical correlation analysis (CCA) is a classical dimensionality reduction technique for two sets of variables that iteratively finds projection directions with maximum correlation. Although CCA is still in vital use in many practical application areas, recent real-world data often contain more complicated nonlinear correlations that cannot be properly captured by classical CCA. In this paper, we thus propose an extension of CCA that can effectively capture such complicated nonlinear correlations through statistical dependency maximization. The proposed method, which we call least-squares canonical dependency analysis (LSCDA), is based on a squared-loss variant of mutual information, and it has various useful properties besides its ability to capture higher-order correlations: for example, it can simultaneously find multiple projection directions (i.e., subspaces), it does not involve density estimation, and it is equipped with a model selection strategy. We demonstrate the usefulness of LSCDA through various experiments on artificial and real-world datasets." @default.
- W2134127584 created "2016-06-24" @default.
- W2134127584 creator A5003668143 @default.
- W2134127584 creator A5063407210 @default.
- W2134127584 date "2012-10-01" @default.
- W2134127584 modified "2023-09-23" @default.
- W2134127584 title "Canonical dependency analysis based on squared-loss mutual information" @default.
- W2134127584 cites W1965555277 @default.
- W2134127584 cites W1970789124 @default.
- W2134127584 cites W1979029020 @default.
- W2134127584 cites W1984983329 @default.
- W2134127584 cites W1986280275 @default.
- W2134127584 cites W1995875735 @default.
- W2134127584 cites W2003239136 @default.
- W2134127584 cites W2016076533 @default.
- W2134127584 cites W2025341678 @default.
- W2134127584 cites W2030748132 @default.
- W2134127584 cites W2031648200 @default.
- W2134127584 cites W2036279918 @default.
- W2134127584 cites W2040216630 @default.
- W2134127584 cites W2057765943 @default.
- W2134127584 cites W2063971957 @default.
- W2134127584 cites W2072460512 @default.
- W2134127584 cites W2079842708 @default.
- W2134127584 cites W2083505311 @default.
- W2134127584 cites W2090362351 @default.
- W2134127584 cites W2093113692 @default.
- W2134127584 cites W2095745100 @default.
- W2134127584 cites W2100235303 @default.
- W2134127584 cites W2108659514 @default.
- W2134127584 cites W2119605622 @default.
- W2134127584 cites W2158698691 @default.
- W2134127584 cites W2160546297 @default.
- W2134127584 cites W2325067916 @default.
- W2134127584 cites W4230610536 @default.
- W2134127584 cites W4252112654 @default.
- W2134127584 doi "https://doi.org/10.1016/j.neunet.2012.06.009" @default.
- W2134127584 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22831849" @default.
- W2134127584 hasPublicationYear "2012" @default.
- W2134127584 type Work @default.
- W2134127584 sameAs 2134127584 @default.
- W2134127584 citedByCount "24" @default.
- W2134127584 countsByYear W21341275842012 @default.
- W2134127584 countsByYear W21341275842013 @default.
- W2134127584 countsByYear W21341275842014 @default.
- W2134127584 countsByYear W21341275842015 @default.
- W2134127584 countsByYear W21341275842016 @default.
- W2134127584 countsByYear W21341275842017 @default.
- W2134127584 countsByYear W21341275842019 @default.
- W2134127584 countsByYear W21341275842022 @default.
- W2134127584 countsByYear W21341275842023 @default.
- W2134127584 crossrefType "journal-article" @default.
- W2134127584 hasAuthorship W2134127584A5003668143 @default.
- W2134127584 hasAuthorship W2134127584A5063407210 @default.
- W2134127584 hasBestOaLocation W21341275842 @default.
- W2134127584 hasConcept C111030470 @default.
- W2134127584 hasConcept C11413529 @default.
- W2134127584 hasConcept C121332964 @default.
- W2134127584 hasConcept C12362212 @default.
- W2134127584 hasConcept C124101348 @default.
- W2134127584 hasConcept C126255220 @default.
- W2134127584 hasConcept C152139883 @default.
- W2134127584 hasConcept C153180895 @default.
- W2134127584 hasConcept C153874254 @default.
- W2134127584 hasConcept C154945302 @default.
- W2134127584 hasConcept C158622935 @default.
- W2134127584 hasConcept C19768560 @default.
- W2134127584 hasConcept C2524010 @default.
- W2134127584 hasConcept C2776330181 @default.
- W2134127584 hasConcept C32834561 @default.
- W2134127584 hasConcept C33923547 @default.
- W2134127584 hasConcept C41008148 @default.
- W2134127584 hasConcept C57493831 @default.
- W2134127584 hasConcept C62520636 @default.
- W2134127584 hasConcept C70518039 @default.
- W2134127584 hasConceptScore W2134127584C111030470 @default.
- W2134127584 hasConceptScore W2134127584C11413529 @default.
- W2134127584 hasConceptScore W2134127584C121332964 @default.
- W2134127584 hasConceptScore W2134127584C12362212 @default.
- W2134127584 hasConceptScore W2134127584C124101348 @default.
- W2134127584 hasConceptScore W2134127584C126255220 @default.
- W2134127584 hasConceptScore W2134127584C152139883 @default.
- W2134127584 hasConceptScore W2134127584C153180895 @default.
- W2134127584 hasConceptScore W2134127584C153874254 @default.
- W2134127584 hasConceptScore W2134127584C154945302 @default.
- W2134127584 hasConceptScore W2134127584C158622935 @default.
- W2134127584 hasConceptScore W2134127584C19768560 @default.
- W2134127584 hasConceptScore W2134127584C2524010 @default.
- W2134127584 hasConceptScore W2134127584C2776330181 @default.
- W2134127584 hasConceptScore W2134127584C32834561 @default.
- W2134127584 hasConceptScore W2134127584C33923547 @default.
- W2134127584 hasConceptScore W2134127584C41008148 @default.
- W2134127584 hasConceptScore W2134127584C57493831 @default.
- W2134127584 hasConceptScore W2134127584C62520636 @default.
- W2134127584 hasConceptScore W2134127584C70518039 @default.
- W2134127584 hasLocation W21341275841 @default.
- W2134127584 hasLocation W21341275842 @default.
- W2134127584 hasLocation W21341275843 @default.