Matches in SemOpenAlex for { <https://semopenalex.org/work/W2134266056> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2134266056 endingPage "779" @default.
- W2134266056 startingPage "767" @default.
- W2134266056 abstract "Bayesian networks (BNs) are knowledge representation tools capable of representing dependence or independence relationships among random variables. Learning the structure of BNs from datasets has received increasing attention in the last two decades, due to the BNs' capacity of providing good inference models and discovering the structure of complex domains. One approach for BNs' structure learning from data is to define a scoring metric that evaluates the quality of the candidate networks, given a dataset, and then apply an optimization procedure to explore the set of candidate networks. Among the most frequently used optimization methods for BN score-based learning is greedy hill climbing (GHC) search. This paper proposes a new local discovery ant colony optimization (ACO) algorithm and a hybrid algorithm max-min ant colony optimization (MMACO), based on the local discovery algorithm max-min parents and children (MMPC) and ACO to learn the structure of a BN. In MMACO, MMPC is used to construct the skeleton of the BN and ACO is used to orientate the skeleton edges, thus returning the final structure. The algorithms are applied to several sets of benchmark networks and are shown to outperform the GHC and simulated annealing algorithms." @default.
- W2134266056 created "2016-06-24" @default.
- W2134266056 creator A5002518694 @default.
- W2134266056 creator A5041180169 @default.
- W2134266056 creator A5050814448 @default.
- W2134266056 creator A5060509789 @default.
- W2134266056 creator A5068474295 @default.
- W2134266056 date "2009-08-01" @default.
- W2134266056 modified "2023-09-22" @default.
- W2134266056 title "Using a Local Discovery Ant Algorithm for Bayesian Network Structure Learning" @default.
- W2134266056 cites W1517993545 @default.
- W2134266056 cites W1598011955 @default.
- W2134266056 cites W1698663318 @default.
- W2134266056 cites W1801737117 @default.
- W2134266056 cites W1934306740 @default.
- W2134266056 cites W1981689130 @default.
- W2134266056 cites W2024060531 @default.
- W2134266056 cites W2039568841 @default.
- W2134266056 cites W2049488596 @default.
- W2134266056 cites W2053225543 @default.
- W2134266056 cites W2055037429 @default.
- W2134266056 cites W2074156066 @default.
- W2134266056 cites W2107631366 @default.
- W2134266056 cites W2145508886 @default.
- W2134266056 cites W2150528082 @default.
- W2134266056 cites W2165190832 @default.
- W2134266056 cites W4292408555 @default.
- W2134266056 cites W4299670631 @default.
- W2134266056 doi "https://doi.org/10.1109/tevc.2009.2024142" @default.
- W2134266056 hasPublicationYear "2009" @default.
- W2134266056 type Work @default.
- W2134266056 sameAs 2134266056 @default.
- W2134266056 citedByCount "69" @default.
- W2134266056 countsByYear W21342660562012 @default.
- W2134266056 countsByYear W21342660562013 @default.
- W2134266056 countsByYear W21342660562014 @default.
- W2134266056 countsByYear W21342660562015 @default.
- W2134266056 countsByYear W21342660562016 @default.
- W2134266056 countsByYear W21342660562017 @default.
- W2134266056 countsByYear W21342660562018 @default.
- W2134266056 countsByYear W21342660562019 @default.
- W2134266056 countsByYear W21342660562020 @default.
- W2134266056 countsByYear W21342660562021 @default.
- W2134266056 countsByYear W21342660562022 @default.
- W2134266056 countsByYear W21342660562023 @default.
- W2134266056 crossrefType "journal-article" @default.
- W2134266056 hasAuthorship W2134266056A5002518694 @default.
- W2134266056 hasAuthorship W2134266056A5041180169 @default.
- W2134266056 hasAuthorship W2134266056A5050814448 @default.
- W2134266056 hasAuthorship W2134266056A5060509789 @default.
- W2134266056 hasAuthorship W2134266056A5068474295 @default.
- W2134266056 hasConcept C119857082 @default.
- W2134266056 hasConcept C126980161 @default.
- W2134266056 hasConcept C13280743 @default.
- W2134266056 hasConcept C135450995 @default.
- W2134266056 hasConcept C154945302 @default.
- W2134266056 hasConcept C185798385 @default.
- W2134266056 hasConcept C205649164 @default.
- W2134266056 hasConcept C2776214188 @default.
- W2134266056 hasConcept C33724603 @default.
- W2134266056 hasConcept C40128228 @default.
- W2134266056 hasConcept C41008148 @default.
- W2134266056 hasConceptScore W2134266056C119857082 @default.
- W2134266056 hasConceptScore W2134266056C126980161 @default.
- W2134266056 hasConceptScore W2134266056C13280743 @default.
- W2134266056 hasConceptScore W2134266056C135450995 @default.
- W2134266056 hasConceptScore W2134266056C154945302 @default.
- W2134266056 hasConceptScore W2134266056C185798385 @default.
- W2134266056 hasConceptScore W2134266056C205649164 @default.
- W2134266056 hasConceptScore W2134266056C2776214188 @default.
- W2134266056 hasConceptScore W2134266056C33724603 @default.
- W2134266056 hasConceptScore W2134266056C40128228 @default.
- W2134266056 hasConceptScore W2134266056C41008148 @default.
- W2134266056 hasIssue "4" @default.
- W2134266056 hasLocation W21342660561 @default.
- W2134266056 hasOpenAccess W2134266056 @default.
- W2134266056 hasPrimaryLocation W21342660561 @default.
- W2134266056 hasRelatedWork W1232705 @default.
- W2134266056 hasRelatedWork W1482507875 @default.
- W2134266056 hasRelatedWork W1485630101 @default.
- W2134266056 hasRelatedWork W1867652237 @default.
- W2134266056 hasRelatedWork W2031837447 @default.
- W2134266056 hasRelatedWork W2053571861 @default.
- W2134266056 hasRelatedWork W2075515394 @default.
- W2134266056 hasRelatedWork W2460653416 @default.
- W2134266056 hasRelatedWork W4229070275 @default.
- W2134266056 hasRelatedWork W4385957992 @default.
- W2134266056 hasVolume "13" @default.
- W2134266056 isParatext "false" @default.
- W2134266056 isRetracted "false" @default.
- W2134266056 magId "2134266056" @default.
- W2134266056 workType "article" @default.