Matches in SemOpenAlex for { <https://semopenalex.org/work/W2134397312> ?p ?o ?g. }
- W2134397312 endingPage "32135" @default.
- W2134397312 startingPage "32129" @default.
- W2134397312 abstract "To evaluate the role of the mitochondrial peripheral-type benzodiazepine receptor (PBR) in steroidogenesis, we developed a molecular approach based on the disruption of the PBR gene, by homologous recombination, in the constitutive steroid producing R2C rat Leydig tumor cell line. Inactivation of one allele of the PBR gene resulted in the suppression of PBR mRNA and ligand binding expression. Immunoblot and electron microscopic immunogold labeling analyses confirmed the absence of the 18-kDa PBR protein in the selected clone. Although mitochondria from the PBR-negative cells contained high levels of the constitutively expressed 30-kDa steroidogenic activity regulator protein, these cells produced minimal amounts of steroids compared with normal cells (5%). Moreover, mitochondria from PBR-negative cells failed to produce pregnenolone when supplied with exogenous cholesterol. Addition of the hydrosoluble cholesterol derivative, 22R-hydroxycholesterol, increased steroid production by the PBR-negative R2C cells, indicating that the cholesterol transport mechanism was impaired. Stable transfection of the PBR-negative R2C Leydig cells with a vector containing the PBR cDNA resulted in the recovery of the steroidogenic function of the cells. These data demonstrate that PBR is an indispensable element of the steroidogenic machinery, where it mediates the delivery of the substrate cholesterol to the inner mitochondrial side chain cleavage cytochrome P-450. To evaluate the role of the mitochondrial peripheral-type benzodiazepine receptor (PBR) in steroidogenesis, we developed a molecular approach based on the disruption of the PBR gene, by homologous recombination, in the constitutive steroid producing R2C rat Leydig tumor cell line. Inactivation of one allele of the PBR gene resulted in the suppression of PBR mRNA and ligand binding expression. Immunoblot and electron microscopic immunogold labeling analyses confirmed the absence of the 18-kDa PBR protein in the selected clone. Although mitochondria from the PBR-negative cells contained high levels of the constitutively expressed 30-kDa steroidogenic activity regulator protein, these cells produced minimal amounts of steroids compared with normal cells (5%). Moreover, mitochondria from PBR-negative cells failed to produce pregnenolone when supplied with exogenous cholesterol. Addition of the hydrosoluble cholesterol derivative, 22R-hydroxycholesterol, increased steroid production by the PBR-negative R2C cells, indicating that the cholesterol transport mechanism was impaired. Stable transfection of the PBR-negative R2C Leydig cells with a vector containing the PBR cDNA resulted in the recovery of the steroidogenic function of the cells. These data demonstrate that PBR is an indispensable element of the steroidogenic machinery, where it mediates the delivery of the substrate cholesterol to the inner mitochondrial side chain cleavage cytochrome P-450. Gonads, adrenal, placenta, and brain are the tissues in the body that have the ability to synthesize steroid hormones. Steroid synthesis begins with the conversion of the precursor cholesterol to pregnenolone by the cholesterol side chain cleavage cytochrome P-450 enzyme (P-450scc) 1The abbreviations used are: P-450scc, C27 cholesterol side chain cleavage cytochrome P-450; PBR, peripheral-type benzodiazepine receptor; StAR, steroidogenic activity regulator protein; PAGE, polyacrylamide gel electrophoresis; Ro5-4864, 4′-chlorodiazepam; PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; bp, base pair(s); kb, kilobase pair(s). 1The abbreviations used are: P-450scc, C27 cholesterol side chain cleavage cytochrome P-450; PBR, peripheral-type benzodiazepine receptor; StAR, steroidogenic activity regulator protein; PAGE, polyacrylamide gel electrophoresis; Ro5-4864, 4′-chlorodiazepam; PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; bp, base pair(s); kb, kilobase pair(s). and auxiliary electron transferring proteins, localized on inner mitochondrial membranes (1Hall P.F. Knobil E. Neil J. The Physiology of Reproduction. Raven Press, New York1988: 975-998Google Scholar, 2Simpson E.R. Waterman M.R. Can. J. Biochem. Cell Biol. 1983; 61: 692-707Crossref PubMed Scopus (148) Google Scholar, 3Kimura T. J. Steroid Biochem. 1986; 25: 711-716Crossref PubMed Scopus (44) Google Scholar, 4Jefcoate C.R. McNamara B.C. Artemenko I. Yamazaki T. J. Steroid Biochem. Mol. Biol. 1992; 43: 751-767Crossref PubMed Scopus (147) Google Scholar). The primary point of control in the acute stimulation of steroidogenesis, that occurs within minutes, by hormones is at the level of cholesterol transport, from intracellular sources to the inner mitochondrial membrane and the subsequent loading of cholesterol in the P-450scc active site (1Hall P.F. Knobil E. Neil J. The Physiology of Reproduction. Raven Press, New York1988: 975-998Google Scholar, 2Simpson E.R. Waterman M.R. Can. J. Biochem. Cell Biol. 1983; 61: 692-707Crossref PubMed Scopus (148) Google Scholar, 3Kimura T. J. Steroid Biochem. 1986; 25: 711-716Crossref PubMed Scopus (44) Google Scholar, 4Jefcoate C.R. McNamara B.C. Artemenko I. Yamazaki T. J. Steroid Biochem. Mol. Biol. 1992; 43: 751-767Crossref PubMed Scopus (147) Google Scholar). This hormone-dependent transport mechanism was shown to be mediated by cAMP and to be localized in the mitochondrion (1Hall P.F. Knobil E. Neil J. The Physiology of Reproduction. Raven Press, New York1988: 975-998Google Scholar, 2Simpson E.R. Waterman M.R. Can. J. Biochem. Cell Biol. 1983; 61: 692-707Crossref PubMed Scopus (148) Google Scholar, 3Kimura T. J. Steroid Biochem. 1986; 25: 711-716Crossref PubMed Scopus (44) Google Scholar, 4Jefcoate C.R. McNamara B.C. Artemenko I. Yamazaki T. J. Steroid Biochem. Mol. Biol. 1992; 43: 751-767Crossref PubMed Scopus (147) Google Scholar). Although a number of molecules have been proposed as potential candidates mediating this cholesterol transfer (3Kimura T. J. Steroid Biochem. 1986; 25: 711-716Crossref PubMed Scopus (44) Google Scholar, 4Jefcoate C.R. McNamara B.C. Artemenko I. Yamazaki T. J. Steroid Biochem. Mol. Biol. 1992; 43: 751-767Crossref PubMed Scopus (147) Google Scholar), no clear evidence has been presented on the identity of this mechanism. During the last decade, however, two cholesterol transport mechanisms have been identified and characterized as mediators of the acute stimulation of steroidogenesis by hormones, the PBR (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar) and StAR (6Stocco D.M. Clark B.J. Endocr. Rev. 1996; 17: 221-244Crossref PubMed Scopus (926) Google Scholar) proteins.PBR is an 18-kDa protein discovered as a class of binding sites for benzodiazepines distinct from the GABAA neurotransmitter receptor (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar). PBR are extremely abundant in steroidogenic cells (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar) and found primarily on outer mitochondrial membranes (7Anholt R.R.H. Pedersen P.L. De Souza E.B. Snyder S.H. J. Biol. Chem. 1986; 261: 576-583Abstract Full Text PDF PubMed Google Scholar). PBR is a multimeric complex composed of the 18-kDa isoquinoline-binding protein and the 34-kDa pore-forming voltage-dependent anion channel protein, preferentially located on the outer/inner mitochondrial membrane contact sites (8McEnery M.W. Snowman A.M. Trifiletti R.R. Snyder S.H. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 3170-3174Crossref PubMed Scopus (670) Google Scholar, 9Garnier M. Dimchev A. Boujrad N. Price M.J. Musto N.A. Papadopoulos V. Mol. Pharmacol. 1994; 45: 201-211PubMed Google Scholar, 10Papadopoulos V. Boujrad N. Ikonomovic M.D. Ferrara P. Vidic B. Mol. Cell. Endocr. 1994; 104: R5-R9Crossref PubMed Scopus (87) Google Scholar). Drug ligands of PBR, upon binding to the receptor, stimulate steroid synthesis in steroidogenic cells in vitro (11Papadopoulos V. Mukhin A.G. Costa E. Krueger K.E. J. Biol. Chem. 1990; 265: 3772-3779Abstract Full Text PDF PubMed Google Scholar, 12Ritta M.N. Calandra R.S. Neuroendocrinology. 1989; 49: 262-266Crossref PubMed Scopus (47) Google Scholar, 13Barnea E.R. Fares F. Gavish M. Mol. Cell. Endocr. 1989; 64: 155-159Crossref PubMed Scopus (57) Google Scholar, 14Amsterdam A. Suh B.S. Endocrinology. 1991; 128: 503-510Crossref Scopus (72) Google Scholar, 15Yanagibashi K. Ohno Y. Nakamichi N. Matsui T. Hayashida K. Takamura M. Yamada K. Tou S. Kawamura M. J. Biochem. (Tokyo). 1989; 106: 1026-1029Crossref PubMed Scopus (106) Google Scholar). Likewise, in vivo studies showed that high affinity PBR ligands increase steroid plasma levels in hypophysectomized rats (16Cavallaro S. Korneyev A. Guidotti A. Costa E. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 10598-10602Crossref PubMed Scopus (59) Google Scholar). Moreover, drug-induced decrease in adrenal PBR expression resulted in reduced circulating glucocorticoid levels in rats (17Amri H. Ogwuegbu S.O. Boujrad N. Drieu K. Papadopoulos V. Endocrinology. 1996; 137: 5707-5718Crossref PubMed Scopus (106) Google Scholar). Further in vitro studies on isolated mitochondria provided evidence that PBR ligands, drug ligands, or the endogenous PBR ligand, the polypeptide diazepam-binding inhibitor (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar, 18Papadopoulos V. Amri H. Boujrad N. Cascio C. Culty M. Garnier M. Hardwick M. Li H. Vidic B. Brown A.S. Reversat J.L. Bernassau J.M. Drieu K. Steroids. 1997; 62: 21-28Crossref PubMed Scopus (335) Google Scholar), stimulate pregnenolone formation by increasing the rate of cholesterol transfer from the outer to the inner mitochondrial membrane (19Krueger K.E. Papadopoulos V. J. Biol. Chem. 1990; 265: 15015-15022Abstract Full Text PDF PubMed Google Scholar, 20Yanagibashi K. Ohno Y. Kawamura M. Hall P.F. Endocrinology. 1988; 123: 2075-2082Crossref PubMed Scopus (88) Google Scholar, 21Besman M.J. Yanagibashi K. Lee T.D. Kawamura M. Hall P.F. Shively J.E. Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 4897-4901Crossref PubMed Scopus (231) Google Scholar, 22Papadopoulos V. Berkovich A. Krueger K.E. Costa E. Guidotti A. Endocrinology. 1991; 129: 1481-1488Crossref PubMed Scopus (191) Google Scholar). We also showed that hormone-stimulated steroidogenesis involves, at least in part, the participation of PBR (23Papadopoulos V. Nowzari F.B. Krueger K.E. J. Biol. Chem. 1991; 266: 3682-3687Abstract Full Text PDF PubMed Google Scholar). More recently, molecular modeling (24Bernassau J.M. Reversat J.L. Ferrara P. Caput D. Lefur G. J. Mol. Graph. 1993; 11: 236-245Crossref PubMed Scopus (96) Google Scholar, 25Papadopoulos V. Payne A.H. Hardy M.P. Russell L.D. The Leydig Cell. Cache River Press, Vienna, IL1996: 598-628Google Scholar) and in vitro reconstitution studies provided evidence that PBR may function as a mitochondrial cholesterol channel (18Papadopoulos V. Amri H. Boujrad N. Cascio C. Culty M. Garnier M. Hardwick M. Li H. Vidic B. Brown A.S. Reversat J.L. Bernassau J.M. Drieu K. Steroids. 1997; 62: 21-28Crossref PubMed Scopus (335) Google Scholar). 2H. Li and V. Papadopoulos, unpublished data. 2H. Li and V. Papadopoulos, unpublished data.StAR has been found only in gonadal and adrenal cells, where it is newly synthesized in response to trophic hormones and cAMP (26Pon L.A. Orme-Johnson N.R. J. Biol. Chem. 1986; 261: 6594-6599Abstract Full Text PDF PubMed Google Scholar, 27Stocco D.M. Kilgore M.W. Biochem. J. 1988; 249: 95-103Crossref PubMed Scopus (98) Google Scholar), as a cytoplasmic precursor protein of 37 kDa targeted to mitochondria (28Stocco D.M. Sodeman T.C. J. Biol. Chem. 1991; 266: 19731-19738Abstract Full Text PDF PubMed Google Scholar,29Epstein L.F. Orme-Johnson N.R. J. Biol. Chem. 1991; 266: 19739-19745Abstract Full Text PDF PubMed Google Scholar). The precursor further undergoes cleavage to produce the 30-kDa mitochondrial StAR protein and its phosphorylated counterpart (6Stocco D.M. Clark B.J. Endocr. Rev. 1996; 17: 221-244Crossref PubMed Scopus (926) Google Scholar). This protein processing is believed to occur at the level of the outer/inner mitochondrial membrane contact sites (6Stocco D.M. Clark B.J. Endocr. Rev. 1996; 17: 221-244Crossref PubMed Scopus (926) Google Scholar). StAR synthesis parallels the maximal capacity of the cells to produce steroids in response to trophic hormones, and expression of StAR in the absence of hormonal stimulation resulted in a 3-fold increase in progesterone production by MA-10 Leydig cells (30Clark B.J. Wells J. King S.R. Stocco D.M. J. Biol. Chem. 1994; 269: 28314-28322Abstract Full Text PDF PubMed Google Scholar, 31Clark B.J. Soo S.-C. Caron K.M. Ikeda Y. Parker K.L. Stocco D.M. Mol. Endocr. 1995; 9: 1346-1355Crossref PubMed Google Scholar). Both in vitro (30Clark B.J. Wells J. King S.R. Stocco D.M. J. Biol. Chem. 1994; 269: 28314-28322Abstract Full Text PDF PubMed Google Scholar, 31Clark B.J. Soo S.-C. Caron K.M. Ikeda Y. Parker K.L. Stocco D.M. Mol. Endocr. 1995; 9: 1346-1355Crossref PubMed Google Scholar) and in vivo (17Amri H. Ogwuegbu S.O. Boujrad N. Drieu K. Papadopoulos V. Endocrinology. 1996; 137: 5707-5718Crossref PubMed Scopus (106) Google Scholar) studies demonstrated that StAR is a hormone-regulated protein and mutations in StAR protein in humans is the cause of congenital lipoid adrenal hyperplasia, characterized by a deficiency in adrenal and gonadal steroid hormones (32Lin D. Sugawara T. Strauss J.F. Clark B.J. Stocco D.M. Saenger P. Rogol A. Miller W.L. Science. 1995; 267: 1828-1831Crossref PubMed Scopus (853) Google Scholar). Recent studies, however, demonstrated that StAR does not need to enter the mitochondria to stimulate steroidogenesis, suggesting that it functions by activating a mitochondrial receptor or transport mechanisms(s) (33Arakane F. Sugawara T. Nishino H. Liu Z. Holt J.A. Pain D. Stocco D.M. Miller W.L. Strauss III, J.F. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 13731-13736Crossref PubMed Scopus (251) Google Scholar).R2C cells, derived from rat Leydig tumors (34Shin S. Yasumura Y. Sato G.H. Endocrinology. 1968; 82: 614-616Crossref PubMed Scopus (47) Google Scholar), maintain their in vitro capacity to synthesize steroids constitutively in a hormone-independent manner (34Shin S. Yasumura Y. Sato G.H. Endocrinology. 1968; 82: 614-616Crossref PubMed Scopus (47) Google Scholar, 35Freeman D.A. Endocrinology. 1987; 120: 124-132Crossref PubMed Scopus (48) Google Scholar). Thus, one can expect that constitutive steroidogenesis is driven by the unregulated expression of the hormonal mechanism controlling steroid synthesis or by an unknown separate mechanism. In 1994, we demonstrated that diazepam-binding inhibitor maintains constitutive steroidogenesis in R2C Leydig cells by binding to a mitochondrial higher affinity PBR which promotes continuous supply of cholesterol to the inner mitochondrial P-450scc (36Garnier M. Boujrad N. Ogwuegbu S.O. Hudson Jr., J.R. Papadopoulos V. J. Biol. Chem. 1994; 269: 22105-22112Abstract Full Text PDF PubMed Google Scholar). This higher affinity site was induced by the addition of constitutive cytosolic proteins on the mitochondrial PBR (36Garnier M. Boujrad N. Ogwuegbu S.O. Hudson Jr., J.R. Papadopoulos V. J. Biol. Chem. 1994; 269: 22105-22112Abstract Full Text PDF PubMed Google Scholar). In addition, Stocco and Chen (37Stocco D.M. Chen W. Endocrinology. 1991; 128: 1918-1926Crossref PubMed Scopus (102) Google Scholar) provided evidence that StAR was constitutively expressed in R2C cells. Thus, these cells provide the ideal system to examine the potential sequence of events mediating the mitochondrial cholesterol transport.In this report, we describe the use of gene targeting in the R2C steroidogenic cells to introduce a null mutation into one allele of the PBR gene. Characterization of the wild type and the mutant cell lines, as well as the mutant cells transfected with the PBR cDNA, reveals that PBR is indispensable for cholesterol transport into mitochondria and steroid synthesis.ConclusionWe have used the constitutive steroid-producing R2C Leydig cell to construct a PBR-null steroidogenic cell line using a method of gene inactivation based on targeted homologous recombination using selectable marker genes. In this PBR mutant cell line, steroidogenesis ceased due to the arrest of cholesterol transport across the outer mitochondrial membrane to the inner mitochondrial P-450scc. However, introduction of PBR in the PBR-negative R2C cells rescued steroidogenesis. These results are in agreement with our recent in vivo studies where a drug-induced decrease in adrenal PBR expression resulted in reduced circulating glucocorticoid levels in rats (17Amri H. Ogwuegbu S.O. Boujrad N. Drieu K. Papadopoulos V. Endocrinology. 1996; 137: 5707-5718Crossref PubMed Scopus (106) Google Scholar) and targeted mutagenesis of PBR showed its lethal effect on mouse embryo survival (18Papadopoulos V. Amri H. Boujrad N. Cascio C. Culty M. Garnier M. Hardwick M. Li H. Vidic B. Brown A.S. Reversat J.L. Bernassau J.M. Drieu K. Steroids. 1997; 62: 21-28Crossref PubMed Scopus (335) Google Scholar). Thus, these data provide unequivocal evidence on the determining role of PBR in cholesterol transport and steroid synthesis.Because PBR is a mitochondrial protein (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar, 7Anholt R.R.H. Pedersen P.L. De Souza E.B. Snyder S.H. J. Biol. Chem. 1986; 261: 576-583Abstract Full Text PDF PubMed Google Scholar), PBR-null cells express high levels of StAR (present study), in vivo reduction of adrenal PBR expression and corticosterone synthesis occurred despite the presence of high levels of StAR (17Amri H. Ogwuegbu S.O. Boujrad N. Drieu K. Papadopoulos V. Endocrinology. 1996; 137: 5707-5718Crossref PubMed Scopus (106) Google Scholar), and StAR does not need to enter the mitochondria to stimulate pregnenolone formation (33Arakane F. Sugawara T. Nishino H. Liu Z. Holt J.A. Pain D. Stocco D.M. Miller W.L. Strauss III, J.F. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 13731-13736Crossref PubMed Scopus (251) Google Scholar), we propose that PBR acts after StAR and that PBR may control or mediate the effect of StAR on mitochondrial steroid synthesis. In addition, the observations that (i) a cytosolic protein is required for the appearance of a higher affinity PBR coupled to constitutive (36Garnier M. Boujrad N. Ogwuegbu S.O. Hudson Jr., J.R. Papadopoulos V. J. Biol. Chem. 1994; 269: 22105-22112Abstract Full Text PDF PubMed Google Scholar) and hormone-induced (52Boujrad N. Gaillard J.-L. Garnier M. Papadopoulos V. Endocrinology. 1994; 135: 1576-1583Crossref PubMed Scopus (56) Google Scholar) steroid synthesis, (ii) PBR is coupled to voltage-dependent anion channel (9Garnier M. Dimchev A. Boujrad N. Price M.J. Musto N.A. Papadopoulos V. Mol. Pharmacol. 1994; 45: 201-211PubMed Google Scholar), a protein located on the outer/inner mitochondrial membrane contact sites, and (iii) the StAR precursor is targeted to mitochondria where it may be cleaved at the contact sites to enter the mitochondria (6Stocco D.M. Clark B.J. Endocr. Rev. 1996; 17: 221-244Crossref PubMed Scopus (926) Google Scholar), suggest that the coordinated interaction of PBR and StAR may be the key to the induction and maintenance of steroid synthesis. Gonads, adrenal, placenta, and brain are the tissues in the body that have the ability to synthesize steroid hormones. Steroid synthesis begins with the conversion of the precursor cholesterol to pregnenolone by the cholesterol side chain cleavage cytochrome P-450 enzyme (P-450scc) 1The abbreviations used are: P-450scc, C27 cholesterol side chain cleavage cytochrome P-450; PBR, peripheral-type benzodiazepine receptor; StAR, steroidogenic activity regulator protein; PAGE, polyacrylamide gel electrophoresis; Ro5-4864, 4′-chlorodiazepam; PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; bp, base pair(s); kb, kilobase pair(s). 1The abbreviations used are: P-450scc, C27 cholesterol side chain cleavage cytochrome P-450; PBR, peripheral-type benzodiazepine receptor; StAR, steroidogenic activity regulator protein; PAGE, polyacrylamide gel electrophoresis; Ro5-4864, 4′-chlorodiazepam; PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; bp, base pair(s); kb, kilobase pair(s). and auxiliary electron transferring proteins, localized on inner mitochondrial membranes (1Hall P.F. Knobil E. Neil J. The Physiology of Reproduction. Raven Press, New York1988: 975-998Google Scholar, 2Simpson E.R. Waterman M.R. Can. J. Biochem. Cell Biol. 1983; 61: 692-707Crossref PubMed Scopus (148) Google Scholar, 3Kimura T. J. Steroid Biochem. 1986; 25: 711-716Crossref PubMed Scopus (44) Google Scholar, 4Jefcoate C.R. McNamara B.C. Artemenko I. Yamazaki T. J. Steroid Biochem. Mol. Biol. 1992; 43: 751-767Crossref PubMed Scopus (147) Google Scholar). The primary point of control in the acute stimulation of steroidogenesis, that occurs within minutes, by hormones is at the level of cholesterol transport, from intracellular sources to the inner mitochondrial membrane and the subsequent loading of cholesterol in the P-450scc active site (1Hall P.F. Knobil E. Neil J. The Physiology of Reproduction. Raven Press, New York1988: 975-998Google Scholar, 2Simpson E.R. Waterman M.R. Can. J. Biochem. Cell Biol. 1983; 61: 692-707Crossref PubMed Scopus (148) Google Scholar, 3Kimura T. J. Steroid Biochem. 1986; 25: 711-716Crossref PubMed Scopus (44) Google Scholar, 4Jefcoate C.R. McNamara B.C. Artemenko I. Yamazaki T. J. Steroid Biochem. Mol. Biol. 1992; 43: 751-767Crossref PubMed Scopus (147) Google Scholar). This hormone-dependent transport mechanism was shown to be mediated by cAMP and to be localized in the mitochondrion (1Hall P.F. Knobil E. Neil J. The Physiology of Reproduction. Raven Press, New York1988: 975-998Google Scholar, 2Simpson E.R. Waterman M.R. Can. J. Biochem. Cell Biol. 1983; 61: 692-707Crossref PubMed Scopus (148) Google Scholar, 3Kimura T. J. Steroid Biochem. 1986; 25: 711-716Crossref PubMed Scopus (44) Google Scholar, 4Jefcoate C.R. McNamara B.C. Artemenko I. Yamazaki T. J. Steroid Biochem. Mol. Biol. 1992; 43: 751-767Crossref PubMed Scopus (147) Google Scholar). Although a number of molecules have been proposed as potential candidates mediating this cholesterol transfer (3Kimura T. J. Steroid Biochem. 1986; 25: 711-716Crossref PubMed Scopus (44) Google Scholar, 4Jefcoate C.R. McNamara B.C. Artemenko I. Yamazaki T. J. Steroid Biochem. Mol. Biol. 1992; 43: 751-767Crossref PubMed Scopus (147) Google Scholar), no clear evidence has been presented on the identity of this mechanism. During the last decade, however, two cholesterol transport mechanisms have been identified and characterized as mediators of the acute stimulation of steroidogenesis by hormones, the PBR (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar) and StAR (6Stocco D.M. Clark B.J. Endocr. Rev. 1996; 17: 221-244Crossref PubMed Scopus (926) Google Scholar) proteins. PBR is an 18-kDa protein discovered as a class of binding sites for benzodiazepines distinct from the GABAA neurotransmitter receptor (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar). PBR are extremely abundant in steroidogenic cells (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar) and found primarily on outer mitochondrial membranes (7Anholt R.R.H. Pedersen P.L. De Souza E.B. Snyder S.H. J. Biol. Chem. 1986; 261: 576-583Abstract Full Text PDF PubMed Google Scholar). PBR is a multimeric complex composed of the 18-kDa isoquinoline-binding protein and the 34-kDa pore-forming voltage-dependent anion channel protein, preferentially located on the outer/inner mitochondrial membrane contact sites (8McEnery M.W. Snowman A.M. Trifiletti R.R. Snyder S.H. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 3170-3174Crossref PubMed Scopus (670) Google Scholar, 9Garnier M. Dimchev A. Boujrad N. Price M.J. Musto N.A. Papadopoulos V. Mol. Pharmacol. 1994; 45: 201-211PubMed Google Scholar, 10Papadopoulos V. Boujrad N. Ikonomovic M.D. Ferrara P. Vidic B. Mol. Cell. Endocr. 1994; 104: R5-R9Crossref PubMed Scopus (87) Google Scholar). Drug ligands of PBR, upon binding to the receptor, stimulate steroid synthesis in steroidogenic cells in vitro (11Papadopoulos V. Mukhin A.G. Costa E. Krueger K.E. J. Biol. Chem. 1990; 265: 3772-3779Abstract Full Text PDF PubMed Google Scholar, 12Ritta M.N. Calandra R.S. Neuroendocrinology. 1989; 49: 262-266Crossref PubMed Scopus (47) Google Scholar, 13Barnea E.R. Fares F. Gavish M. Mol. Cell. Endocr. 1989; 64: 155-159Crossref PubMed Scopus (57) Google Scholar, 14Amsterdam A. Suh B.S. Endocrinology. 1991; 128: 503-510Crossref Scopus (72) Google Scholar, 15Yanagibashi K. Ohno Y. Nakamichi N. Matsui T. Hayashida K. Takamura M. Yamada K. Tou S. Kawamura M. J. Biochem. (Tokyo). 1989; 106: 1026-1029Crossref PubMed Scopus (106) Google Scholar). Likewise, in vivo studies showed that high affinity PBR ligands increase steroid plasma levels in hypophysectomized rats (16Cavallaro S. Korneyev A. Guidotti A. Costa E. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 10598-10602Crossref PubMed Scopus (59) Google Scholar). Moreover, drug-induced decrease in adrenal PBR expression resulted in reduced circulating glucocorticoid levels in rats (17Amri H. Ogwuegbu S.O. Boujrad N. Drieu K. Papadopoulos V. Endocrinology. 1996; 137: 5707-5718Crossref PubMed Scopus (106) Google Scholar). Further in vitro studies on isolated mitochondria provided evidence that PBR ligands, drug ligands, or the endogenous PBR ligand, the polypeptide diazepam-binding inhibitor (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar, 18Papadopoulos V. Amri H. Boujrad N. Cascio C. Culty M. Garnier M. Hardwick M. Li H. Vidic B. Brown A.S. Reversat J.L. Bernassau J.M. Drieu K. Steroids. 1997; 62: 21-28Crossref PubMed Scopus (335) Google Scholar), stimulate pregnenolone formation by increasing the rate of cholesterol transfer from the outer to the inner mitochondrial membrane (19Krueger K.E. Papadopoulos V. J. Biol. Chem. 1990; 265: 15015-15022Abstract Full Text PDF PubMed Google Scholar, 20Yanagibashi K. Ohno Y. Kawamura M. Hall P.F. Endocrinology. 1988; 123: 2075-2082Crossref PubMed Scopus (88) Google Scholar, 21Besman M.J. Yanagibashi K. Lee T.D. Kawamura M. Hall P.F. Shively J.E. Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 4897-4901Crossref PubMed Scopus (231) Google Scholar, 22Papadopoulos V. Berkovich A. Krueger K.E. Costa E. Guidotti A. Endocrinology. 1991; 129: 1481-1488Crossref PubMed Scopus (191) Google Scholar). We also showed that hormone-stimulated steroidogenesis involves, at least in part, the participation of PBR (23Papadopoulos V. Nowzari F.B. Krueger K.E. J. Biol. Chem. 1991; 266: 3682-3687Abstract Full Text PDF PubMed Google Scholar). More recently, molecular modeling (24Bernassau J.M. Reversat J.L. Ferrara P. Caput D. Lefur G. J. Mol. Graph. 1993; 11: 236-245Crossref PubMed Scopus (96) Google Scholar, 25Papadopoulos V. Payne A.H. Hardy M.P. Russell L.D. The Leydig Cell. Cache River Press, Vienna, IL1996: 598-628Google Scholar) and in vitro reconstitution studies provided evidence that PBR may function as a mitochondrial cholesterol channel (18Papadopoulos V. Amri H. Boujrad N. Cascio C. Culty M. Garnier M. Hardwick M. Li H. Vidic B. Brown A.S. Reversat J.L. Bernassau J.M. Drieu K. Steroids. 1997; 62: 21-28Crossref PubMed Scopus (335) Google Scholar). 2H. Li and V. Papadopoulos, unpublished data. 2H. Li and V. Papadopoulos, unpublished data. StAR has been found only in gonadal and adrenal cells, where it is newly synthesized in response to trophic hormones and cAMP (26Pon L.A. Orme-Johnson N.R. J. Biol. Chem. 1986; 261: 6594-6599Abstract Full Text PDF PubMed Google Scholar, 27Stocco D.M. Kilgore M.W. Biochem. J. 1988; 249: 95-103Crossref PubMed Scopus (98) Google Scholar), as a cytoplasmic precursor protein of 37 kDa targeted to mitochondria (28Stocco D.M. Sodeman T.C. J. Biol. Chem. 1991; 266: 19731-19738Abstract Full Text PDF PubMed Google Scholar,29Epstein L.F. Orme-Johnson N.R. J. Biol. Chem. 1991; 266: 19739-19745Abstract Full Text PDF PubMed Google Scholar). The precursor further undergoes cleavage to produce the 30-kDa mitochondrial StAR protein and its phosphorylated counterpart (6Stocco D.M. Clark B.J. Endocr. Rev. 1996; 17: 221-244Crossref PubMed Scopus (926) Google Scholar). This protein processing is believed to occur at the level of the outer/inner mitochondrial membrane contact sites (6Stocco D.M. Clark B.J. Endocr. Rev. 1996; 17: 221-244Crossref PubMed Scopus (926) Google Scholar). StAR synthesis parallels the maximal capacity of the cells to produce steroids in response to trophic hormones, and expression of StAR in the absence of hormonal stimulation resulted in a 3-fold increase in progesterone production by MA-10 Leydig cells (30Clark B.J. Wells J. King S.R. Stocco D.M. J. Biol. Chem. 1994; 269: 28314-28322Abstract Full Text PDF PubMed Google Scholar, 31Clark B.J. Soo S.-C. Caron K.M. Ikeda Y. Parker K.L. Stocco D.M. Mol. Endocr. 1995; 9: 1346-1355Crossref PubMed Google Scholar). Both in vitro (30Clark B.J. Wells J. King S.R. Stocco D.M. J. Biol. Chem. 1994; 269: 28314-28322Abstract Full Text PDF PubMed Google Scholar, 31Clark B.J. Soo S.-C. Caron K.M. Ikeda Y. Parker K.L. Stocco D.M. Mol. Endocr. 1995; 9: 1346-1355Crossref PubMed Google Scholar) and in vivo (17Amri H. Ogwuegbu S.O. Boujrad N. Drieu K. Papadopoulos V. Endocrinology. 1996; 137: 5707-5718Crossref PubMed Scopus (106) Google Scholar) studies demonstrated that StAR is a hormone-regulated protein and mutations in StAR protein in humans is the cause of congenital lipoid adrenal hyperplasia, characterized by a deficiency in adrenal and gonadal steroid hormones (32Lin D. Sugawara T. Strauss J.F. Clark B.J. Stocco D.M. Saenger P. Rogol A. Miller W.L. Science. 1995; 267: 1828-1831Crossref PubMed Scopus (853) Google Scholar). Recent studies, however, demonstrated that StAR does not need to enter the mitochondria to stimulate steroidogenesis, suggesting that it functions by activating a mitochondrial receptor or transport mechanisms(s) (33Arakane F. Sugawara T. Nishino H. Liu Z. Holt J.A. Pain D. Stocco D.M. Miller W.L. Strauss III, J.F. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 13731-13736Crossref PubMed Scopus (251) Google Scholar). R2C cells, derived from rat Leydig tumors (34Shin S. Yasumura Y. Sato G.H. Endocrinology. 1968; 82: 614-616Crossref PubMed Scopus (47) Google Scholar), maintain their in vitro capacity to synthesize steroids constitutively in a hormone-independent manner (34Shin S. Yasumura Y. Sato G.H. Endocrinology. 1968; 82: 614-616Crossref PubMed Scopus (47) Google Scholar, 35Freeman D.A. Endocrinology. 1987; 120: 124-132Crossref PubMed Scopus (48) Google Scholar). Thus, one can expect that constitutive steroidogenesis is driven by the unregulated expression of the hormonal mechanism controlling steroid synthesis or by an unknown separate mechanism. In 1994, we demonstrated that diazepam-binding inhibitor maintains constitutive steroidogenesis in R2C Leydig cells by binding to a mitochondrial higher affinity PBR which promotes continuous supply of cholesterol to the inner mitochondrial P-450scc (36Garnier M. Boujrad N. Ogwuegbu S.O. Hudson Jr., J.R. Papadopoulos V. J. Biol. Chem. 1994; 269: 22105-22112Abstract Full Text PDF PubMed Google Scholar). This higher affinity site was induced by the addition of constitutive cytosolic proteins on the mitochondrial PBR (36Garnier M. Boujrad N. Ogwuegbu S.O. Hudson Jr., J.R. Papadopoulos V. J. Biol. Chem. 1994; 269: 22105-22112Abstract Full Text PDF PubMed Google Scholar). In addition, Stocco and Chen (37Stocco D.M. Chen W. Endocrinology. 1991; 128: 1918-1926Crossref PubMed Scopus (102) Google Scholar) provided evidence that StAR was constitutively expressed in R2C cells. Thus, these cells provide the ideal system to examine the potential sequence of events mediating the mitochondrial cholesterol transport. In this report, we describe the use of gene targeting in the R2C steroidogenic cells to introduce a null mutation into one allele of the PBR gene. Characterization of the wild type and the mutant cell lines, as well as the mutant cells transfected with the PBR cDNA, reveals that PBR is indispensable for cholesterol transport into mitochondria and steroid synthesis. ConclusionWe have used the constitutive steroid-producing R2C Leydig cell to construct a PBR-null steroidogenic cell line using a method of gene inactivation based on targeted homologous recombination using selectable marker genes. In this PBR mutant cell line, steroidogenesis ceased due to the arrest of cholesterol transport across the outer mitochondrial membrane to the inner mitochondrial P-450scc. However, introduction of PBR in the PBR-negative R2C cells rescued steroidogenesis. These results are in agreement with our recent in vivo studies where a drug-induced decrease in adrenal PBR expression resulted in reduced circulating glucocorticoid levels in rats (17Amri H. Ogwuegbu S.O. Boujrad N. Drieu K. Papadopoulos V. Endocrinology. 1996; 137: 5707-5718Crossref PubMed Scopus (106) Google Scholar) and targeted mutagenesis of PBR showed its lethal effect on mouse embryo survival (18Papadopoulos V. Amri H. Boujrad N. Cascio C. Culty M. Garnier M. Hardwick M. Li H. Vidic B. Brown A.S. Reversat J.L. Bernassau J.M. Drieu K. Steroids. 1997; 62: 21-28Crossref PubMed Scopus (335) Google Scholar). Thus, these data provide unequivocal evidence on the determining role of PBR in cholesterol transport and steroid synthesis.Because PBR is a mitochondrial protein (5Papadopoulos V. Endocr. Rev. 1993; 14: 222-240Crossref PubMed Scopus (402) Google Scholar, 7Anholt R.R.H. Pedersen P.L. De Souza E.B. Snyder S.H. J. Biol. Chem. 1986; 261: 576-583Abstract Full Text PDF PubMed Google Scholar), PBR-null cells express high levels of StAR (present study), in vivo reduction of adrenal PBR expression and corticosterone synthesis occurred despite the presence of high levels of StAR (17Amri H. Ogwuegbu S.O. Boujrad N. Drieu K. Papadopoulos V. Endocrinology. 1996; 137: 5707-5718Crossref PubMed Scopus (106) Google Scholar), and StAR does not need to enter the mitochondria to stimulate pregnenolone formation (33Arakane F. Sugawara T. Nishino H. Liu Z. Holt J.A. Pain D. Stocco D.M. Miller W.L. Strauss III, J.F. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 13731-13736Crossref PubMed Scopus (251) Google Scholar), we propose that PBR acts after StAR and that PBR may control or mediate the effect of StAR on mitochondrial steroid synthesis. In addition, the observations that (i) a cytosolic protein is required for the appearance of a higher affinity PBR coupled to constitutive (36Garnier M. Boujrad N. Ogwuegbu S.O. Hudson Jr., J.R. Papadopoulos V. J. Biol. Chem. 1994; 269: 22105-22112Abstract Full Text PDF PubMed Google Scholar) and hormone-induced (52Boujrad N. Gaillard J.-L. Garnier M. Papadopoulos V. Endocrinology. 1994; 135: 1576-1583Crossref PubMed Scopus (56) Google Scholar) steroid synthesis, (ii) PBR is coupled to voltage-dependent anion channel (9Garnier M. Dimchev A. Boujrad N. Price M.J. Musto N.A. Papadopoulos V. Mol. Pharmacol. 1994; 45: 201-211PubMed Google Scholar), a protein located on the outer/inner mitochondrial membrane contact sites, and (iii) the StAR precursor is targeted to mitochondria where it may be cleaved at the contact sites to enter the mitochondria (6Stocco D.M. Clark B.J. Endocr. Rev. 1996; 17: 221-244Crossref PubMed Scopus (926) Google Scholar), suggest that the coordinated interaction of PBR and StAR may be the key to the induction and maintenance of steroid synthesis. We have used the constitutive steroid-producing R2C Leydig cell to construct a PBR-null steroidogenic cell line using a method of gene inactivation based on targeted homologous recombination using selectable marker genes. In this PBR mutant cell line, steroidogenesis ceased due to the arrest of cholesterol transport across the outer mitochondrial membrane to the inner mitochondrial P-450scc. However, introduction of PBR in the PBR-negative R2C cells rescued steroidogenesis. These results are in agreement with our recent in vivo studies where a drug-induced decrease in adrenal PBR expression resulted in reduced circulating glucocorticoid levels in rats (17Amri H. Ogwuegbu S.O. Boujrad N. Drieu K. Papadopoulos V. Endocrinology. 1996; 137: 5707-5718Crossref PubMed Scopus (106) Google Scholar) and targeted mutagenesis of PBR showed its lethal effect on mouse embryo survival (18Papadopoulos V. Amri H. Boujrad N. Cascio C. Culty M. Garnier M. Hardwick M. Li H. Vidic B. Brown A.S. Reversat J.L. Bernassau J.M. Drieu K. Steroids. 1997; 62: 21-28Crossref PubMed Scopus (335) Google Scholar). Thus, these data provide unequivocal evidence on the determining role of PBR in cholesterol transport and steroid synthesis." @default.
- W2134397312 created "2016-06-24" @default.
- W2134397312 creator A5001227908 @default.
- W2134397312 creator A5005328494 @default.
- W2134397312 creator A5011536713 @default.
- W2134397312 creator A5028648474 @default.
- W2134397312 creator A5049005189 @default.
- W2134397312 creator A5058801218 @default.
- W2134397312 date "1997-12-01" @default.
- W2134397312 modified "2023-10-14" @default.
- W2134397312 title "Targeted Disruption of the Peripheral-type Benzodiazepine Receptor Gene Inhibits Steroidogenesis in the R2C Leydig Tumor Cell Line" @default.
- W2134397312 cites W1479988478 @default.
- W2134397312 cites W1489222126 @default.
- W2134397312 cites W1500857007 @default.
- W2134397312 cites W1518437590 @default.
- W2134397312 cites W1519074143 @default.
- W2134397312 cites W1537167627 @default.
- W2134397312 cites W1545712107 @default.
- W2134397312 cites W1596638623 @default.
- W2134397312 cites W1604272930 @default.
- W2134397312 cites W1610204701 @default.
- W2134397312 cites W1814114436 @default.
- W2134397312 cites W1965133186 @default.
- W2134397312 cites W1965513201 @default.
- W2134397312 cites W1969612587 @default.
- W2134397312 cites W1979130436 @default.
- W2134397312 cites W1983042919 @default.
- W2134397312 cites W1983237714 @default.
- W2134397312 cites W1988170155 @default.
- W2134397312 cites W1998776130 @default.
- W2134397312 cites W2004921676 @default.
- W2134397312 cites W2006240021 @default.
- W2134397312 cites W2011847168 @default.
- W2134397312 cites W2019114444 @default.
- W2134397312 cites W2024063425 @default.
- W2134397312 cites W2030621682 @default.
- W2134397312 cites W2039490460 @default.
- W2134397312 cites W2043813981 @default.
- W2134397312 cites W2046496618 @default.
- W2134397312 cites W2050643306 @default.
- W2134397312 cites W2053497150 @default.
- W2134397312 cites W2067930732 @default.
- W2134397312 cites W2070564677 @default.
- W2134397312 cites W2070587923 @default.
- W2134397312 cites W2072700306 @default.
- W2134397312 cites W2083658917 @default.
- W2134397312 cites W2087384563 @default.
- W2134397312 cites W2092806325 @default.
- W2134397312 cites W2096357732 @default.
- W2134397312 cites W2100837269 @default.
- W2134397312 cites W2140087203 @default.
- W2134397312 cites W2164288418 @default.
- W2134397312 cites W2414120361 @default.
- W2134397312 cites W4293247451 @default.
- W2134397312 doi "https://doi.org/10.1074/jbc.272.51.32129" @default.
- W2134397312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9405411" @default.
- W2134397312 hasPublicationYear "1997" @default.
- W2134397312 type Work @default.
- W2134397312 sameAs 2134397312 @default.
- W2134397312 citedByCount "213" @default.
- W2134397312 countsByYear W21343973122012 @default.
- W2134397312 countsByYear W21343973122013 @default.
- W2134397312 countsByYear W21343973122014 @default.
- W2134397312 countsByYear W21343973122015 @default.
- W2134397312 countsByYear W21343973122016 @default.
- W2134397312 countsByYear W21343973122017 @default.
- W2134397312 countsByYear W21343973122018 @default.
- W2134397312 countsByYear W21343973122019 @default.
- W2134397312 countsByYear W21343973122020 @default.
- W2134397312 countsByYear W21343973122021 @default.
- W2134397312 countsByYear W21343973122022 @default.
- W2134397312 countsByYear W21343973122023 @default.
- W2134397312 crossrefType "journal-article" @default.
- W2134397312 hasAuthorship W2134397312A5001227908 @default.
- W2134397312 hasAuthorship W2134397312A5005328494 @default.
- W2134397312 hasAuthorship W2134397312A5011536713 @default.
- W2134397312 hasAuthorship W2134397312A5028648474 @default.
- W2134397312 hasAuthorship W2134397312A5049005189 @default.
- W2134397312 hasAuthorship W2134397312A5058801218 @default.
- W2134397312 hasBestOaLocation W21343973121 @default.
- W2134397312 hasConcept C104317684 @default.
- W2134397312 hasConcept C126322002 @default.
- W2134397312 hasConcept C134018914 @default.
- W2134397312 hasConcept C170493617 @default.
- W2134397312 hasConcept C2777736315 @default.
- W2134397312 hasConcept C2778173252 @default.
- W2134397312 hasConcept C2778575703 @default.
- W2134397312 hasConcept C46762472 @default.
- W2134397312 hasConcept C502942594 @default.
- W2134397312 hasConcept C54355233 @default.
- W2134397312 hasConcept C71315377 @default.
- W2134397312 hasConcept C71924100 @default.
- W2134397312 hasConcept C86803240 @default.
- W2134397312 hasConcept C95444343 @default.
- W2134397312 hasConceptScore W2134397312C104317684 @default.
- W2134397312 hasConceptScore W2134397312C126322002 @default.
- W2134397312 hasConceptScore W2134397312C134018914 @default.
- W2134397312 hasConceptScore W2134397312C170493617 @default.