Matches in SemOpenAlex for { <https://semopenalex.org/work/W2134543293> ?p ?o ?g. }
- W2134543293 endingPage "440" @default.
- W2134543293 startingPage "421" @default.
- W2134543293 abstract "We suggest a theory of in-grain orientation gradients in plastically strained metals. It is an approach to explain why initially uniformly oriented crystals can—under gradient-free external loadings—build up in-grain orientation gradients during plastic deformation and how this phenomenon depends on intrinsic factors (crystal orientation) and extrinsic factors (neighbor grains). The intrinsic origin (orientation dependence) of in-grain orientation gradients is investigated by quantifying the change in crystal reorientation upon small changes in initial orientation. This part of the approach is formulated by applying a divergence operator to reorientation rate vector fields (in the present paper calculated by using strain-rate homogenization Taylor–Bishop–Hill theory). The obtained scalar divergence function (but not the reorientation vector field itself) quantifies the kinematic stability of grains under homogeneous boundary conditions as a function of their orientation. Positive divergence (source in the reorientation rate vector field) characterizes orientations with diverging non-zero reorientation rates which are kinematically unstable and prone to build up orientation gradients. Zero divergence indicates orientations with reorientation rate identity with the surrounding orientations which are not prone to build up orientation gradients. Negative divergence (sink in the reorientation rate vector field) characterizes orientations with converging non-zero reorientation rates which are kinematically stable and not prone to build up orientation gradients. Corresponding results obtained by use of a crystal plasticity finite element formulation are in good agreement with the reorientation field divergence function derived by homogenization theory. The extrinsic origin of in-grain orientation gradients (influence of grain–neighbor interaction) is addressed using a crystal plasticity finite element bicrystal model. The simulations show that a significant dependence of orientation gradients on the neighbor crystals occurs for grains with high positive divergence. The build-up of orientation gradients in grains with close to zero or negative divergence is in body centered cubic crystals less sensitive to the presence of neighbor orientations than in face centered cubic crystals (Goss and cube orientation)." @default.
- W2134543293 created "2016-06-24" @default.
- W2134543293 creator A5037372327 @default.
- W2134543293 creator A5041020801 @default.
- W2134543293 creator A5068498575 @default.
- W2134543293 creator A5081973657 @default.
- W2134543293 date "2002-01-01" @default.
- W2134543293 modified "2023-10-02" @default.
- W2134543293 title "Theory of orientation gradients in plastically strained crystals" @default.
- W2134543293 cites W1963735501 @default.
- W2134543293 cites W1967191314 @default.
- W2134543293 cites W1969742506 @default.
- W2134543293 cites W1971377594 @default.
- W2134543293 cites W1981744532 @default.
- W2134543293 cites W1983650574 @default.
- W2134543293 cites W1989646665 @default.
- W2134543293 cites W1990841046 @default.
- W2134543293 cites W2000661024 @default.
- W2134543293 cites W2002502086 @default.
- W2134543293 cites W2006345890 @default.
- W2134543293 cites W2010619301 @default.
- W2134543293 cites W2013369511 @default.
- W2134543293 cites W2015387064 @default.
- W2134543293 cites W2016091351 @default.
- W2134543293 cites W2019199714 @default.
- W2134543293 cites W2020609646 @default.
- W2134543293 cites W2027931888 @default.
- W2134543293 cites W2028458244 @default.
- W2134543293 cites W2031947248 @default.
- W2134543293 cites W2035892998 @default.
- W2134543293 cites W2036907364 @default.
- W2134543293 cites W2038251657 @default.
- W2134543293 cites W2042071294 @default.
- W2134543293 cites W2046242974 @default.
- W2134543293 cites W2055025437 @default.
- W2134543293 cites W2057333018 @default.
- W2134543293 cites W2057603478 @default.
- W2134543293 cites W2058306393 @default.
- W2134543293 cites W2060143587 @default.
- W2134543293 cites W2061386907 @default.
- W2134543293 cites W2064330136 @default.
- W2134543293 cites W2069622790 @default.
- W2134543293 cites W2075307565 @default.
- W2134543293 cites W2083774361 @default.
- W2134543293 cites W2083871742 @default.
- W2134543293 cites W2091465719 @default.
- W2134543293 cites W2096570982 @default.
- W2134543293 cites W2101724240 @default.
- W2134543293 cites W2104769543 @default.
- W2134543293 cites W2149687749 @default.
- W2134543293 cites W2169323821 @default.
- W2134543293 cites W2332326052 @default.
- W2134543293 cites W2463989158 @default.
- W2134543293 cites W2486208148 @default.
- W2134543293 cites W2499012761 @default.
- W2134543293 cites W3038845933 @default.
- W2134543293 cites W58208259 @default.
- W2134543293 doi "https://doi.org/10.1016/s1359-6454(01)00323-8" @default.
- W2134543293 hasPublicationYear "2002" @default.
- W2134543293 type Work @default.
- W2134543293 sameAs 2134543293 @default.
- W2134543293 citedByCount "185" @default.
- W2134543293 countsByYear W21345432932012 @default.
- W2134543293 countsByYear W21345432932013 @default.
- W2134543293 countsByYear W21345432932014 @default.
- W2134543293 countsByYear W21345432932015 @default.
- W2134543293 countsByYear W21345432932016 @default.
- W2134543293 countsByYear W21345432932017 @default.
- W2134543293 countsByYear W21345432932018 @default.
- W2134543293 countsByYear W21345432932019 @default.
- W2134543293 countsByYear W21345432932020 @default.
- W2134543293 countsByYear W21345432932021 @default.
- W2134543293 countsByYear W21345432932022 @default.
- W2134543293 countsByYear W21345432932023 @default.
- W2134543293 crossrefType "journal-article" @default.
- W2134543293 hasAuthorship W2134543293A5037372327 @default.
- W2134543293 hasAuthorship W2134543293A5041020801 @default.
- W2134543293 hasAuthorship W2134543293A5068498575 @default.
- W2134543293 hasAuthorship W2134543293A5081973657 @default.
- W2134543293 hasConcept C120665830 @default.
- W2134543293 hasConcept C121332964 @default.
- W2134543293 hasConcept C130217890 @default.
- W2134543293 hasConcept C149342994 @default.
- W2134543293 hasConcept C159985019 @default.
- W2134543293 hasConcept C185592680 @default.
- W2134543293 hasConcept C18903297 @default.
- W2134543293 hasConcept C192562407 @default.
- W2134543293 hasConcept C2524010 @default.
- W2134543293 hasConcept C26873012 @default.
- W2134543293 hasConcept C2778722038 @default.
- W2134543293 hasConcept C33923547 @default.
- W2134543293 hasConcept C47908070 @default.
- W2134543293 hasConcept C8010536 @default.
- W2134543293 hasConcept C85725439 @default.
- W2134543293 hasConcept C86803240 @default.
- W2134543293 hasConcept C87976508 @default.
- W2134543293 hasConceptScore W2134543293C120665830 @default.
- W2134543293 hasConceptScore W2134543293C121332964 @default.