Matches in SemOpenAlex for { <https://semopenalex.org/work/W2134682011> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2134682011 abstract "Now tide- independent bathymetric system is widely used in hydrographic survey and improves effectively single-beam bathymetric accuracy relative to the traditional bathymetric method. While time delay (TD), which exists between GPS RTK and single-beam sounding system, often leads to the positioning and sounding solution non synchronization and decreases the accuracy of final result. TD mainly originates from the lingering output of GPS RTK solution due to its interior algorithm, satellites number, radio signal processing mode and logging data model. Large numbers of experiments have proved that time delay may reach 0.2 second at least and 1.2 second at most. Generally, TD is determined by comparing sounding solutions with positioning solutions measured as vessel going by an anchored buoy in a to-and-fro surveying way with different velocities. However, this method may bring obvious error in the determination due to buoy movement. Therefore the following three methods are studied and presented in the paper. We first study method of characteristic point pairs. Looking for a characteristic inshore seabed, we implemented a to-and-fro measurement along a planning line. The characteristic terrain of the seabed can be found easily in the two profiles. For a characteristic aim on seabed, we can find a pair of characteristic points in the two profiles. According to the two horizontal positions, depths and time of the characteristic point pair, we can calculate the TD. For different characteristic points, we can also determine their time delays. Then the TD of the system is the mean of TDs of all point pairs. Determined TD by the above method needs to choose characteristic point pairs manually. In the following, we will study an automatic determination method, which is method of maximum similarity of profiles. High-sampling rate makes the to-and-fro profiles present seabed topography subtly and continuously. If we think the two profiles are two curves of A and B, we can determine TD in virtue of similarity coefficient R of them. If we fix profile A and move profile B, we can get a series of similarity coefficient R(d). If we move a displacement of d, R reaches maximum or is close to 1, then the d is the displacement resulted from TD. If v <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>A</sub> and v <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>B</sub> are mean vessel velocity in to-and- fro measurements, then TD can be acquired through the calculating of d divided by the sum of v <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>A</sub> and v <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>B</sub> . The method can automatically calculate TD, while we must implement a fro-and- to measurement. In the following, we present a more convenient method which is Method of Consistent Vertical Motion of Vessel. Both of heave derived from MRU and GPS height from GPS RTK take the same role in monitoring the vessel vertical motion. If we correct the two signals to the same position, such as reference point(RP) in vessel frame system(VFS), we can get two time series dh <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>heave-RP</sup> and h <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>GPS-RP</sup> . Taking similar method shown in method of maximum similarity of profiles, we can acquire TD by fixing time series dh <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>heave-RP</sup> and moving time series h <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>GPS-RP</sup> in time scale. If we move a time ? and make similarity coefficient R(?) reach maximum, then the ? is also time delay of the system. The method of time delay determination can be implemented at any time and by any way. While an important mention, which time length [0 <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>T</i> ] of the time series used for determining time delay is not the whole time length of dh <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>heave-RP</sup> or h <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>GPS-RP</sup> , but only part of it, needs to be clarified. As concerning frequency characters of the two time series, time series h <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>GPS-RP</sup> , veritably reflects entire- frequency vertical motion, while dh <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>heave-RP</sup> is only valid in presenting high-frequency vertical motion. Thus, the time length of both time series should be within 60 second of their common period. we used the three methods in an experiment of time delay detection, and acquire very consistent time delay and high accuracy of time delay determination. Finally, we analyze the characters of the three methods. Method of characteristic point pairs and method of maximum similarity of profiles need to implement to-and-fro profile measurements in data sampling. The two methods are simple in calculation, while accuracy of the determination of TD will become weak with the decreasing of sampling density and point- pair correlative degree. Method of consistent motion has simplicity in implement and high accuracy in the determination of time delay. Thus we recommend it as an optimum method for determining TD." @default.
- W2134682011 created "2016-06-24" @default.
- W2134682011 creator A5002287326 @default.
- W2134682011 creator A5015093562 @default.
- W2134682011 creator A5018332007 @default.
- W2134682011 date "2008-01-01" @default.
- W2134682011 modified "2023-10-03" @default.
- W2134682011 title "Determination of time delay for precise bathymetric survey" @default.
- W2134682011 cites W1483606987 @default.
- W2134682011 doi "https://doi.org/10.1109/oceans.2008.5151824" @default.
- W2134682011 hasPublicationYear "2008" @default.
- W2134682011 type Work @default.
- W2134682011 sameAs 2134682011 @default.
- W2134682011 citedByCount "1" @default.
- W2134682011 countsByYear W21346820112016 @default.
- W2134682011 crossrefType "proceedings-article" @default.
- W2134682011 hasAuthorship W2134682011A5002287326 @default.
- W2134682011 hasAuthorship W2134682011A5015093562 @default.
- W2134682011 hasAuthorship W2134682011A5018332007 @default.
- W2134682011 hasConcept C111368507 @default.
- W2134682011 hasConcept C127162648 @default.
- W2134682011 hasConcept C127313418 @default.
- W2134682011 hasConcept C13280743 @default.
- W2134682011 hasConcept C161218011 @default.
- W2134682011 hasConcept C161840515 @default.
- W2134682011 hasConcept C174943157 @default.
- W2134682011 hasConcept C199360897 @default.
- W2134682011 hasConcept C205649164 @default.
- W2134682011 hasConcept C2524010 @default.
- W2134682011 hasConcept C2779843651 @default.
- W2134682011 hasConcept C2779847632 @default.
- W2134682011 hasConcept C28719098 @default.
- W2134682011 hasConcept C33613203 @default.
- W2134682011 hasConcept C33923547 @default.
- W2134682011 hasConcept C41008148 @default.
- W2134682011 hasConcept C50254455 @default.
- W2134682011 hasConcept C55510283 @default.
- W2134682011 hasConcept C58640448 @default.
- W2134682011 hasConcept C60229501 @default.
- W2134682011 hasConcept C62649853 @default.
- W2134682011 hasConcept C76155785 @default.
- W2134682011 hasConcept C76256466 @default.
- W2134682011 hasConceptScore W2134682011C111368507 @default.
- W2134682011 hasConceptScore W2134682011C127162648 @default.
- W2134682011 hasConceptScore W2134682011C127313418 @default.
- W2134682011 hasConceptScore W2134682011C13280743 @default.
- W2134682011 hasConceptScore W2134682011C161218011 @default.
- W2134682011 hasConceptScore W2134682011C161840515 @default.
- W2134682011 hasConceptScore W2134682011C174943157 @default.
- W2134682011 hasConceptScore W2134682011C199360897 @default.
- W2134682011 hasConceptScore W2134682011C205649164 @default.
- W2134682011 hasConceptScore W2134682011C2524010 @default.
- W2134682011 hasConceptScore W2134682011C2779843651 @default.
- W2134682011 hasConceptScore W2134682011C2779847632 @default.
- W2134682011 hasConceptScore W2134682011C28719098 @default.
- W2134682011 hasConceptScore W2134682011C33613203 @default.
- W2134682011 hasConceptScore W2134682011C33923547 @default.
- W2134682011 hasConceptScore W2134682011C41008148 @default.
- W2134682011 hasConceptScore W2134682011C50254455 @default.
- W2134682011 hasConceptScore W2134682011C55510283 @default.
- W2134682011 hasConceptScore W2134682011C58640448 @default.
- W2134682011 hasConceptScore W2134682011C60229501 @default.
- W2134682011 hasConceptScore W2134682011C62649853 @default.
- W2134682011 hasConceptScore W2134682011C76155785 @default.
- W2134682011 hasConceptScore W2134682011C76256466 @default.
- W2134682011 hasLocation W21346820111 @default.
- W2134682011 hasOpenAccess W2134682011 @default.
- W2134682011 hasPrimaryLocation W21346820111 @default.
- W2134682011 hasRelatedWork W2116772707 @default.
- W2134682011 hasRelatedWork W2134682011 @default.
- W2134682011 hasRelatedWork W2191285862 @default.
- W2134682011 hasRelatedWork W2359245650 @default.
- W2134682011 hasRelatedWork W2969540503 @default.
- W2134682011 hasRelatedWork W3110256798 @default.
- W2134682011 hasRelatedWork W3196327806 @default.
- W2134682011 hasRelatedWork W4200416357 @default.
- W2134682011 hasRelatedWork W4213361309 @default.
- W2134682011 hasRelatedWork W2261382924 @default.
- W2134682011 isParatext "false" @default.
- W2134682011 isRetracted "false" @default.
- W2134682011 magId "2134682011" @default.
- W2134682011 workType "article" @default.