Matches in SemOpenAlex for { <https://semopenalex.org/work/W2134736135> ?p ?o ?g. }
- W2134736135 endingPage "1218" @default.
- W2134736135 startingPage "1210" @default.
- W2134736135 abstract "Microcirculatory abnormalities contribute to the pathogenesis and pathophysiology of many of the rheumatic diseases. This is best recognized in systemic sclerosis (SSc), in which structural microvessel disease can be well demonstrated using the technique of capillary microscopy [1], and more recently by video and digital capillaroscopy [2, 3]. However, in many other conditions the microvasculature is more subtly involved. By the ‘microvasculature’ we mean the arterioles, the capillaries and the venules. Any inflammatory state is associated with profound microvascular perturbation. For example, in rheumatoid arthritis the synovial microvasculature undergoes major change with formation of new blood vessels (angiogenesis) in the hypertrophied synovium and with lymphocyte trafficking through high endothelial venules. These high endothelial venules are lined by specialized endothelial cells whose formation has been induced during the inflammatory process. [4]. In the study of disease, we must be concerned not only with understanding basic pathophysiology but also with the measurement of disease progression. If we cannot measure the disease, then we cannot assess its progression or responsiveness to treatment. In addition, the ability to measure disease processes can give us indirect insights into pathophysiology by allowing us to assess response to therapeutic interventions which are known to have specific mechanisms of action. Can we measure microvascular disease/involvement by disease, and apply this to the study of rheumatological disorders? As already mentioned, we can examine nailfold capillary structure in certain connective tissue diseases, such as SSc and dermatomyositis, using nailfold microscopy and video capillaroscopy, and one aspect of capillary function (permeability) can be examined by fluoroscopy [5, 6], which is, however, invasive in that it requires an intravenous dye injection. In this review we shall discuss the relatively new technique of laser Doppler imaging (otherwise termed ‘scanning laser Doppler’), which gives a direct measure of microcirculatory flow. We believe laser Doppler imaging affords significant potential in the study of microcirculatory involvement of the rheumatic diseases and it is non-invasive. Background to laser Doppler blood flow monitoring The observed wavelength of electromagnetic radiation is affected by relative motion between the source and observer. This phenomenon (also applicable to sound waves, as in the technique of Doppler ultrasound) is known as the Doppler effect. When low-level laser light, of a few milliwatts, is directed onto the skin’s surface a fraction of the light penetrates the skin and interacts with both static tissue and moving cells (primarily red blood cells). The penetration depth of light is dependent upon the tissue morphology, absorption and the wavelength used [7, 8]. The light that is reflected or randomly scattered from the static tissue remains unchanged in wavelength. In contrast the light that is scattered from the moving blood cells undergoes a small change in wavelength, proportional to the speed of the erythrocytes, due to the" @default.
- W2134736135 created "2016-06-24" @default.
- W2134736135 creator A5036507043 @default.
- W2134736135 creator A5045200423 @default.
- W2134736135 creator A5056447660 @default.
- W2134736135 date "2004-07-13" @default.
- W2134736135 modified "2023-10-12" @default.
- W2134736135 title "Laser Doppler imaging: a developing technique for application in the rheumatic diseases" @default.
- W2134736135 cites W1513681002 @default.
- W2134736135 cites W1890072875 @default.
- W2134736135 cites W194190250 @default.
- W2134736135 cites W1965911922 @default.
- W2134736135 cites W1971372482 @default.
- W2134736135 cites W1974282348 @default.
- W2134736135 cites W1976996272 @default.
- W2134736135 cites W1978590223 @default.
- W2134736135 cites W1981537660 @default.
- W2134736135 cites W1995133092 @default.
- W2134736135 cites W1999847567 @default.
- W2134736135 cites W2000875210 @default.
- W2134736135 cites W2001457006 @default.
- W2134736135 cites W2010995467 @default.
- W2134736135 cites W2012701523 @default.
- W2134736135 cites W2013521757 @default.
- W2134736135 cites W2014348658 @default.
- W2134736135 cites W2015045907 @default.
- W2134736135 cites W2015058749 @default.
- W2134736135 cites W2016680015 @default.
- W2134736135 cites W2019242806 @default.
- W2134736135 cites W2025200556 @default.
- W2134736135 cites W2025615143 @default.
- W2134736135 cites W2028225383 @default.
- W2134736135 cites W2029033480 @default.
- W2134736135 cites W2032025015 @default.
- W2134736135 cites W2034324954 @default.
- W2134736135 cites W2034699134 @default.
- W2134736135 cites W2035088460 @default.
- W2134736135 cites W2038862001 @default.
- W2134736135 cites W2043467348 @default.
- W2134736135 cites W2045501419 @default.
- W2134736135 cites W2049207636 @default.
- W2134736135 cites W2050071536 @default.
- W2134736135 cites W2054376627 @default.
- W2134736135 cites W2056036766 @default.
- W2134736135 cites W2057505414 @default.
- W2134736135 cites W2057527410 @default.
- W2134736135 cites W2058053299 @default.
- W2134736135 cites W2058534297 @default.
- W2134736135 cites W2059722075 @default.
- W2134736135 cites W2067957471 @default.
- W2134736135 cites W2071372348 @default.
- W2134736135 cites W2078920062 @default.
- W2134736135 cites W2079382952 @default.
- W2134736135 cites W2082154664 @default.
- W2134736135 cites W2083989369 @default.
- W2134736135 cites W2084633570 @default.
- W2134736135 cites W2086571373 @default.
- W2134736135 cites W2087009179 @default.
- W2134736135 cites W2089080692 @default.
- W2134736135 cites W2089093694 @default.
- W2134736135 cites W2093223545 @default.
- W2134736135 cites W2095174212 @default.
- W2134736135 cites W2097318421 @default.
- W2134736135 cites W2099684772 @default.
- W2134736135 cites W2099756346 @default.
- W2134736135 cites W2102412854 @default.
- W2134736135 cites W2103518876 @default.
- W2134736135 cites W2107351285 @default.
- W2134736135 cites W2112067379 @default.
- W2134736135 cites W2114760391 @default.
- W2134736135 cites W2118237164 @default.
- W2134736135 cites W2124473070 @default.
- W2134736135 cites W2125255718 @default.
- W2134736135 cites W2131311740 @default.
- W2134736135 cites W2137930905 @default.
- W2134736135 cites W2138276450 @default.
- W2134736135 cites W2139610664 @default.
- W2134736135 cites W2141048462 @default.
- W2134736135 cites W2142130127 @default.
- W2134736135 cites W2142283490 @default.
- W2134736135 cites W2149050301 @default.
- W2134736135 cites W2150168622 @default.
- W2134736135 cites W2158396577 @default.
- W2134736135 cites W2165452688 @default.
- W2134736135 cites W2168494829 @default.
- W2134736135 cites W2171335415 @default.
- W2134736135 cites W2415869338 @default.
- W2134736135 cites W2466612263 @default.
- W2134736135 cites W2526878013 @default.
- W2134736135 cites W281876886 @default.
- W2134736135 cites W55539597 @default.
- W2134736135 cites W1605605162 @default.
- W2134736135 doi "https://doi.org/10.1093/rheumatology/keh275" @default.
- W2134736135 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15226515" @default.
- W2134736135 hasPublicationYear "2004" @default.
- W2134736135 type Work @default.
- W2134736135 sameAs 2134736135 @default.
- W2134736135 citedByCount "84" @default.