Matches in SemOpenAlex for { <https://semopenalex.org/work/W2134754332> ?p ?o ?g. }
- W2134754332 endingPage "448" @default.
- W2134754332 startingPage "437" @default.
- W2134754332 abstract "Water temperature is an important physical variable in aquatic ecosystems. It can affect both chemical and biological processes such as dissolved oxygen concentration and both the metabolism and growth of aquatic organisms. For water resource management, stream water temperature models that can accurately reproduce the essential statistical characteristics of historical data can be very useful. The present study deals with the modeling in the Deschutes River of average weekly maximum temperature (AWMT) series using univariate stochastic approaches. Autoregressive (AR) and periodic autoregressive (PAR) models were used to model AWMT data. The AR model consisted of decomposing water temperature data into a long-term annual component and a residual component. The long-term annual component was modeled by fitting a sine function to the time series, while the residuals representing the departure from the long-term annual component were modeled using a Markov chain process. The PAR model was applied to the standardized data obtained by subtracting the AWMT series from interannual mean of each period. To test the performance of the above models, the leave-one-out (Jackknife) technique was used. The results indicated that both models have good predictive ability for a relatively large system such as the Dechutes River. On an annual basis from 1963 to 1980, the average root mean square error varied between 0.81 and 0.90 °C for AR(1) and PAR(1), respectively, and the mean bias remained near 0 °C. Averaged Nash-Sutcliffe coefficient of efficiency (NSC) values obtained by AR (0.94) and PAR (0.92) models were close and comparable. Of the two models, the PAR(1) model seemed the most promising based on its performance and ability to model periodicity in autocorrelations. Since no exogenous variables such as air temperatures and streamflow were incorporated, the use of the PAR model limits the managerial decisions in natural streams and rivers.Key words: average weekly maximum temperature, stochastic model, PAR, AR." @default.
- W2134754332 created "2016-06-24" @default.
- W2134754332 creator A5019623223 @default.
- W2134754332 creator A5047595798 @default.
- W2134754332 creator A5055949420 @default.
- W2134754332 creator A5063382801 @default.
- W2134754332 creator A5070269067 @default.
- W2134754332 date "2007-07-01" @default.
- W2134754332 modified "2023-10-17" @default.
- W2134754332 title "Modeling of water temperatures based on stochastic approaches: case study of the Deschutes River" @default.
- W2134754332 cites W1970289298 @default.
- W2134754332 cites W1972633414 @default.
- W2134754332 cites W1975205285 @default.
- W2134754332 cites W1980926456 @default.
- W2134754332 cites W1992488239 @default.
- W2134754332 cites W2017727617 @default.
- W2134754332 cites W2021638339 @default.
- W2134754332 cites W2033904036 @default.
- W2134754332 cites W2038698475 @default.
- W2134754332 cites W2044772591 @default.
- W2134754332 cites W2050022705 @default.
- W2134754332 cites W2052194672 @default.
- W2134754332 cites W2067843160 @default.
- W2134754332 cites W2074303368 @default.
- W2134754332 cites W2077824617 @default.
- W2134754332 cites W2101660119 @default.
- W2134754332 cites W2115543569 @default.
- W2134754332 cites W2115677407 @default.
- W2134754332 cites W2135819209 @default.
- W2134754332 cites W2166796724 @default.
- W2134754332 cites W2254418134 @default.
- W2134754332 cites W4229977739 @default.
- W2134754332 cites W4242827154 @default.
- W2134754332 cites W4244719954 @default.
- W2134754332 doi "https://doi.org/10.1139/s06-067" @default.
- W2134754332 hasPublicationYear "2007" @default.
- W2134754332 type Work @default.
- W2134754332 sameAs 2134754332 @default.
- W2134754332 citedByCount "58" @default.
- W2134754332 countsByYear W21347543322012 @default.
- W2134754332 countsByYear W21347543322013 @default.
- W2134754332 countsByYear W21347543322014 @default.
- W2134754332 countsByYear W21347543322015 @default.
- W2134754332 countsByYear W21347543322016 @default.
- W2134754332 countsByYear W21347543322017 @default.
- W2134754332 countsByYear W21347543322018 @default.
- W2134754332 countsByYear W21347543322019 @default.
- W2134754332 countsByYear W21347543322020 @default.
- W2134754332 countsByYear W21347543322021 @default.
- W2134754332 countsByYear W21347543322022 @default.
- W2134754332 countsByYear W21347543322023 @default.
- W2134754332 crossrefType "journal-article" @default.
- W2134754332 hasAuthorship W2134754332A5019623223 @default.
- W2134754332 hasAuthorship W2134754332A5047595798 @default.
- W2134754332 hasAuthorship W2134754332A5055949420 @default.
- W2134754332 hasAuthorship W2134754332A5063382801 @default.
- W2134754332 hasAuthorship W2134754332A5070269067 @default.
- W2134754332 hasConcept C105795698 @default.
- W2134754332 hasConcept C11413529 @default.
- W2134754332 hasConcept C127413603 @default.
- W2134754332 hasConcept C139945424 @default.
- W2134754332 hasConcept C143724316 @default.
- W2134754332 hasConcept C149782125 @default.
- W2134754332 hasConcept C151406439 @default.
- W2134754332 hasConcept C151730666 @default.
- W2134754332 hasConcept C155512373 @default.
- W2134754332 hasConcept C159877910 @default.
- W2134754332 hasConcept C161584116 @default.
- W2134754332 hasConcept C185429906 @default.
- W2134754332 hasConcept C187320778 @default.
- W2134754332 hasConcept C199163554 @default.
- W2134754332 hasConcept C24338571 @default.
- W2134754332 hasConcept C33923547 @default.
- W2134754332 hasConcept C39432304 @default.
- W2134754332 hasConcept C76886044 @default.
- W2134754332 hasConcept C81790035 @default.
- W2134754332 hasConcept C86803240 @default.
- W2134754332 hasConceptScore W2134754332C105795698 @default.
- W2134754332 hasConceptScore W2134754332C11413529 @default.
- W2134754332 hasConceptScore W2134754332C127413603 @default.
- W2134754332 hasConceptScore W2134754332C139945424 @default.
- W2134754332 hasConceptScore W2134754332C143724316 @default.
- W2134754332 hasConceptScore W2134754332C149782125 @default.
- W2134754332 hasConceptScore W2134754332C151406439 @default.
- W2134754332 hasConceptScore W2134754332C151730666 @default.
- W2134754332 hasConceptScore W2134754332C155512373 @default.
- W2134754332 hasConceptScore W2134754332C159877910 @default.
- W2134754332 hasConceptScore W2134754332C161584116 @default.
- W2134754332 hasConceptScore W2134754332C185429906 @default.
- W2134754332 hasConceptScore W2134754332C187320778 @default.
- W2134754332 hasConceptScore W2134754332C199163554 @default.
- W2134754332 hasConceptScore W2134754332C24338571 @default.
- W2134754332 hasConceptScore W2134754332C33923547 @default.
- W2134754332 hasConceptScore W2134754332C39432304 @default.
- W2134754332 hasConceptScore W2134754332C76886044 @default.
- W2134754332 hasConceptScore W2134754332C81790035 @default.
- W2134754332 hasConceptScore W2134754332C86803240 @default.
- W2134754332 hasIssue "4" @default.