Matches in SemOpenAlex for { <https://semopenalex.org/work/W2134865281> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2134865281 endingPage "148" @default.
- W2134865281 startingPage "147" @default.
- W2134865281 abstract "If K is an ordered field then every convex subring of K is a valuation ring of K. This easy but fundamental observation has made valuation theory a very natural and important tool in real algebraic geometry. In particular many topological phenomena of semialgebraic sets and of constructible subsets of real spectra are best explained by use of valuations. We have seen in recent years how important it is to switch from the consideration of particular orderings of fields to a study of the set of all orderings of all residue class fields of a commutative ring A, i.e. the real spectrum SperA of A. Now why not do the same with valuations? This leads to the definition of valuation spectra. In principle the points of the valuation spectrum SpevA should be pairs (p, v) consisting of a prime ideal p of A, i.e. a point of SpecA, and a Krull valuation v of the residue class field Quot(A/p). Here one has to made a decision whether one should distinguish between different valuations of Quot(A/p) which have the same valuation ring or not. One further has to choose a topology on SpevA, where again at least two reasonable choices can be made. Finally one should look for sheaves of “functions” on SpevA and some prominent subsets of SpevA. In recent years various authors have defined valuation spectra and/or related spaces. (Brumfiel, de la Puente, Berkovich, Robson, Huber, Schwartz). To my opinion the question which valuation spectrum is the “right” one depends on the applications one has in mind. Certain valuation spectra are important both for real algebraic and for p-adic geometry. In want to stress here a direction followed by Roland Huber which leads to a new foundation of rigid analytic geometry. Huber defines for A in a certain class of topological rings, which he calls “f -adic rings”, a ringed space SpaA, the analytic spectrum of A. The points of SpaA are those points (p, v) of the valuation spectrum SpevA such that a homomorphism form A to a valued field K inducing v is continuous. Analytic spectra are the building blocks of “adic" @default.
- W2134865281 created "2016-06-24" @default.
- W2134865281 creator A5046037676 @default.
- W2134865281 date "1998-01-01" @default.
- W2134865281 modified "2023-10-01" @default.
- W2134865281 title "On valuation spectra" @default.
- W2134865281 cites W119527372 @default.
- W2134865281 cites W148161311 @default.
- W2134865281 cites W153501581 @default.
- W2134865281 cites W1549562143 @default.
- W2134865281 cites W1580630207 @default.
- W2134865281 cites W1690238531 @default.
- W2134865281 cites W2015303552 @default.
- W2134865281 cites W2041662516 @default.
- W2134865281 cites W2072243474 @default.
- W2134865281 cites W2082077150 @default.
- W2134865281 cites W2095877551 @default.
- W2134865281 cites W2504050845 @default.
- W2134865281 cites W2913049457 @default.
- W2134865281 cites W596635484 @default.
- W2134865281 cites W8416568 @default.
- W2134865281 doi "https://doi.org/10.4064/-44-1-147-148" @default.
- W2134865281 hasPublicationYear "1998" @default.
- W2134865281 type Work @default.
- W2134865281 sameAs 2134865281 @default.
- W2134865281 citedByCount "16" @default.
- W2134865281 countsByYear W21348652812013 @default.
- W2134865281 countsByYear W21348652812015 @default.
- W2134865281 countsByYear W21348652812018 @default.
- W2134865281 countsByYear W21348652812019 @default.
- W2134865281 crossrefType "journal-article" @default.
- W2134865281 hasAuthorship W2134865281A5046037676 @default.
- W2134865281 hasBestOaLocation W21348652811 @default.
- W2134865281 hasConcept C10138342 @default.
- W2134865281 hasConcept C118615104 @default.
- W2134865281 hasConcept C144133560 @default.
- W2134865281 hasConcept C144237770 @default.
- W2134865281 hasConcept C144558754 @default.
- W2134865281 hasConcept C186027771 @default.
- W2134865281 hasConcept C200802036 @default.
- W2134865281 hasConcept C202444582 @default.
- W2134865281 hasConcept C2781025942 @default.
- W2134865281 hasConcept C33923547 @default.
- W2134865281 hasConcept C9652623 @default.
- W2134865281 hasConceptScore W2134865281C10138342 @default.
- W2134865281 hasConceptScore W2134865281C118615104 @default.
- W2134865281 hasConceptScore W2134865281C144133560 @default.
- W2134865281 hasConceptScore W2134865281C144237770 @default.
- W2134865281 hasConceptScore W2134865281C144558754 @default.
- W2134865281 hasConceptScore W2134865281C186027771 @default.
- W2134865281 hasConceptScore W2134865281C200802036 @default.
- W2134865281 hasConceptScore W2134865281C202444582 @default.
- W2134865281 hasConceptScore W2134865281C2781025942 @default.
- W2134865281 hasConceptScore W2134865281C33923547 @default.
- W2134865281 hasConceptScore W2134865281C9652623 @default.
- W2134865281 hasIssue "1" @default.
- W2134865281 hasLocation W21348652811 @default.
- W2134865281 hasOpenAccess W2134865281 @default.
- W2134865281 hasPrimaryLocation W21348652811 @default.
- W2134865281 hasRelatedWork W1007337118 @default.
- W2134865281 hasRelatedWork W1534350895 @default.
- W2134865281 hasRelatedWork W1549562143 @default.
- W2134865281 hasRelatedWork W1690238531 @default.
- W2134865281 hasRelatedWork W189398859 @default.
- W2134865281 hasRelatedWork W1971287413 @default.
- W2134865281 hasRelatedWork W1988742335 @default.
- W2134865281 hasRelatedWork W2004685496 @default.
- W2134865281 hasRelatedWork W2059820916 @default.
- W2134865281 hasRelatedWork W2065356659 @default.
- W2134865281 hasRelatedWork W2068351734 @default.
- W2134865281 hasRelatedWork W2082077150 @default.
- W2134865281 hasRelatedWork W2095877551 @default.
- W2134865281 hasRelatedWork W2607042452 @default.
- W2134865281 hasRelatedWork W2893290390 @default.
- W2134865281 hasRelatedWork W2963549006 @default.
- W2134865281 hasRelatedWork W2964107794 @default.
- W2134865281 hasRelatedWork W3037199498 @default.
- W2134865281 hasRelatedWork W3040986643 @default.
- W2134865281 hasRelatedWork W3190096466 @default.
- W2134865281 hasVolume "44" @default.
- W2134865281 isParatext "false" @default.
- W2134865281 isRetracted "false" @default.
- W2134865281 magId "2134865281" @default.
- W2134865281 workType "article" @default.