Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135087196> ?p ?o ?g. }
- W2135087196 endingPage "5513" @default.
- W2135087196 startingPage "5513" @default.
- W2135087196 abstract "Two sounding rockets launched from Peru as part of Project Condor confirm and extend a number of previous rocket measurements of the wave number spectrum of equatorial spread F irregularities. Other papers in this series present investigations of the intermediate- and long-wavelength regimes; here, we concentrate on wavelengths less than 100 m. The Condor density fluctuation spectra display a break at a wavelength near 100 m, identical to that found in the PLUMEX experiment (Kelley et al., 1982b). The Condor data also confirm a subrange in which the density and the wave potential obey the Boltzmann relation—a strong indication of the presence of low-frequency electrostatic waves with finite wavelength parallel to the magnetic field, perhaps low-frequency drift waves as proposed by Kelley et al. (1982b). The Condor data are also consistent with the previous conjecture that drift waves only exist above 300 km altitude. To investigate the difference in spectra observed over two altitude ranges, we have fit to the data a form for the power spectrum taken from Keskinen and Ossakow (1981). The fitted spectrum, along with empirically determined growth and dissipation rates, is next used to calculate the energy pumped into the spectrum at long wavelengths as well as the energy dissipated at shorter wavelengths. It is found that the energy is balanced by classical collisional effects in the low-altitude case, but energy balance in the high-altitude case requires an enhanced dissipation of about 500 times that due to classical diffusion. This result again implies the existence of electrostatic waves, which cause anomalous diffusion due to two mechanisms: nonambipolar diffusion and wave-particle interactions. We propose that the enhanced diffusion coefficient should also be consistent with a convective transport model for anomalous diffusion. In this model, the long-wavelength portion of the spectrum consists of coherently steepened (k−2) Rayleigh-Taylor generated structures, while the short wavelengths are a turbulent cascade of low-frequency drift waves which cause convective transport. We have used the measured electric field spectrum in the drift wave regime to calculate the effective diffusion due to stochastic E × B scattering. The resulting diffusion coefficient is comparable to that indicated by the observations, although its value depends on the outer scale selected for the turbulent spectrum. Furthermore, the experimental data show that the wavelength at which the drift wave cascade originates varies inversely with the power spectral density. If stochastic E × B scattering is the dominant enhanced diffusion mechanism, then in order to duplicate the observed behavior, the turbulent portion of the spectrum must extend to longer scales than the wavelength at which the drift waves are excited. Thus the model is consistent with but does not uniquely imply an inverse cascade of drift wave turbulence in equatorial spread F." @default.
- W2135087196 created "2016-06-24" @default.
- W2135087196 creator A5007959041 @default.
- W2135087196 creator A5042423591 @default.
- W2135087196 creator A5058996447 @default.
- W2135087196 date "1986-01-01" @default.
- W2135087196 modified "2023-09-24" @default.
- W2135087196 title "An analysis of the role of drift waves in equatorial spread<i>F</i>" @default.
- W2135087196 cites W180580680 @default.
- W2135087196 cites W1964861985 @default.
- W2135087196 cites W1965237485 @default.
- W2135087196 cites W1965699148 @default.
- W2135087196 cites W1967791390 @default.
- W2135087196 cites W1969351221 @default.
- W2135087196 cites W1971796801 @default.
- W2135087196 cites W1978785387 @default.
- W2135087196 cites W1980165063 @default.
- W2135087196 cites W1982437740 @default.
- W2135087196 cites W1982476144 @default.
- W2135087196 cites W1982507760 @default.
- W2135087196 cites W1990906781 @default.
- W2135087196 cites W1991275000 @default.
- W2135087196 cites W1995083948 @default.
- W2135087196 cites W1996935919 @default.
- W2135087196 cites W2006832798 @default.
- W2135087196 cites W2007909114 @default.
- W2135087196 cites W2012106254 @default.
- W2135087196 cites W2017582547 @default.
- W2135087196 cites W2021552450 @default.
- W2135087196 cites W2025578680 @default.
- W2135087196 cites W2027727920 @default.
- W2135087196 cites W2034941224 @default.
- W2135087196 cites W2036937706 @default.
- W2135087196 cites W2037359481 @default.
- W2135087196 cites W2050962398 @default.
- W2135087196 cites W2055794491 @default.
- W2135087196 cites W2058526054 @default.
- W2135087196 cites W2062982037 @default.
- W2135087196 cites W2074717779 @default.
- W2135087196 cites W2075129769 @default.
- W2135087196 cites W2078708794 @default.
- W2135087196 cites W2080170822 @default.
- W2135087196 cites W2082436500 @default.
- W2135087196 cites W2083780282 @default.
- W2135087196 cites W2084955949 @default.
- W2135087196 cites W2087653163 @default.
- W2135087196 cites W2089021920 @default.
- W2135087196 cites W2091566798 @default.
- W2135087196 cites W2091911473 @default.
- W2135087196 cites W2092932275 @default.
- W2135087196 cites W2100876424 @default.
- W2135087196 cites W2102071766 @default.
- W2135087196 cites W2106630982 @default.
- W2135087196 cites W2120188623 @default.
- W2135087196 cites W2122406745 @default.
- W2135087196 cites W2136470512 @default.
- W2135087196 cites W2157702464 @default.
- W2135087196 cites W2160060490 @default.
- W2135087196 doi "https://doi.org/10.1029/ja091ia05p05513" @default.
- W2135087196 hasPublicationYear "1986" @default.
- W2135087196 type Work @default.
- W2135087196 sameAs 2135087196 @default.
- W2135087196 citedByCount "66" @default.
- W2135087196 countsByYear W21350871962012 @default.
- W2135087196 countsByYear W21350871962013 @default.
- W2135087196 countsByYear W21350871962014 @default.
- W2135087196 countsByYear W21350871962015 @default.
- W2135087196 countsByYear W21350871962016 @default.
- W2135087196 countsByYear W21350871962017 @default.
- W2135087196 countsByYear W21350871962018 @default.
- W2135087196 countsByYear W21350871962019 @default.
- W2135087196 countsByYear W21350871962021 @default.
- W2135087196 countsByYear W21350871962022 @default.
- W2135087196 countsByYear W21350871962023 @default.
- W2135087196 crossrefType "journal-article" @default.
- W2135087196 hasAuthorship W2135087196A5007959041 @default.
- W2135087196 hasAuthorship W2135087196A5042423591 @default.
- W2135087196 hasAuthorship W2135087196A5058996447 @default.
- W2135087196 hasConcept C105795698 @default.
- W2135087196 hasConcept C120665830 @default.
- W2135087196 hasConcept C121332964 @default.
- W2135087196 hasConcept C1276947 @default.
- W2135087196 hasConcept C135402231 @default.
- W2135087196 hasConcept C168110828 @default.
- W2135087196 hasConcept C2524010 @default.
- W2135087196 hasConcept C30475298 @default.
- W2135087196 hasConcept C33923547 @default.
- W2135087196 hasConcept C4839761 @default.
- W2135087196 hasConcept C51091305 @default.
- W2135087196 hasConcept C62520636 @default.
- W2135087196 hasConcept C6260449 @default.
- W2135087196 hasConcept C6350597 @default.
- W2135087196 hasConcept C69357855 @default.
- W2135087196 hasConcept C8058405 @default.
- W2135087196 hasConceptScore W2135087196C105795698 @default.
- W2135087196 hasConceptScore W2135087196C120665830 @default.
- W2135087196 hasConceptScore W2135087196C121332964 @default.
- W2135087196 hasConceptScore W2135087196C1276947 @default.