Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135207800> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2135207800 abstract "The Lq,p-cohomology of a Riemannian manifold (M, g) is defined to be the quotient of closed Lp-forms, modulo the exact forms which are derivatives of Lq-forms, where the measure considered comes from the Riemannian structure. The Lq,p-cohomology of a simplicial complex K is defined to be the quotient of p-summable cocycles of K, modulo the coboundaries of q-summable cocycles. We introduce those two notions together with a variant for coarse cohomology on graphs, and we establish their main properties. We define the categories we work on, i.e. manifolds and simplicial complexes of bounded geometry, and we show how cohomology classes can be represented by smooth forms. The first result of the thesis is a de Rham type theorem: we prove that for an orientable, complete and (non compact) Riemannian manifold with bounded geometry (M, g) together with a triangulation K with bounded geometry, the Lq,p-cohomology of the manifold coincides with the Lq,p-cohomology of the triangulation. This is a generalization of an earlier result from Gol'dshtein, Kuz'minov and Shvedov. The second result is a quasi-isometry invariance one: we prove how this de Rham type isomorphism together with a result in coarse cohomology induces the fact that the Lq,p-cohomology of a Riemannian manifold depends only on its quasi-invariance class. This result was proved in the q = p case by Elek. We establish some consequences, such as monocity results for Lq,p-cohomology, and the quasi-isometry invariance of the existence of Sobolev inequalities." @default.
- W2135207800 created "2016-06-24" @default.
- W2135207800 creator A5010185527 @default.
- W2135207800 date "2009-01-01" @default.
- W2135207800 modified "2023-09-23" @default.
- W2135207800 title "Lq,p -Cohomology of Riemannian Manifolds and Simplicial Complexes of Bounded Geometry" @default.
- W2135207800 cites W1522382323 @default.
- W2135207800 cites W1557324374 @default.
- W2135207800 cites W1557582418 @default.
- W2135207800 cites W1966642002 @default.
- W2135207800 cites W1983231151 @default.
- W2135207800 cites W2013078881 @default.
- W2135207800 cites W2049928387 @default.
- W2135207800 cites W2055118439 @default.
- W2135207800 cites W2120713972 @default.
- W2135207800 cites W2479842962 @default.
- W2135207800 cites W3038588914 @default.
- W2135207800 cites W3043060850 @default.
- W2135207800 cites W623954676 @default.
- W2135207800 cites W649436365 @default.
- W2135207800 doi "https://doi.org/10.5075/epfl-thesis-4544" @default.
- W2135207800 hasPublicationYear "2009" @default.
- W2135207800 type Work @default.
- W2135207800 sameAs 2135207800 @default.
- W2135207800 citedByCount "4" @default.
- W2135207800 countsByYear W21352078002014 @default.
- W2135207800 countsByYear W21352078002016 @default.
- W2135207800 countsByYear W21352078002017 @default.
- W2135207800 countsByYear W21352078002021 @default.
- W2135207800 crossrefType "journal-article" @default.
- W2135207800 hasAuthorship W2135207800A5010185527 @default.
- W2135207800 hasConcept C127413603 @default.
- W2135207800 hasConcept C134306372 @default.
- W2135207800 hasConcept C181104567 @default.
- W2135207800 hasConcept C202444582 @default.
- W2135207800 hasConcept C2779593128 @default.
- W2135207800 hasConcept C33923547 @default.
- W2135207800 hasConcept C34388435 @default.
- W2135207800 hasConcept C529865628 @default.
- W2135207800 hasConcept C68365058 @default.
- W2135207800 hasConcept C72738302 @default.
- W2135207800 hasConcept C74196217 @default.
- W2135207800 hasConcept C78519656 @default.
- W2135207800 hasConcept C78606066 @default.
- W2135207800 hasConceptScore W2135207800C127413603 @default.
- W2135207800 hasConceptScore W2135207800C134306372 @default.
- W2135207800 hasConceptScore W2135207800C181104567 @default.
- W2135207800 hasConceptScore W2135207800C202444582 @default.
- W2135207800 hasConceptScore W2135207800C2779593128 @default.
- W2135207800 hasConceptScore W2135207800C33923547 @default.
- W2135207800 hasConceptScore W2135207800C34388435 @default.
- W2135207800 hasConceptScore W2135207800C529865628 @default.
- W2135207800 hasConceptScore W2135207800C68365058 @default.
- W2135207800 hasConceptScore W2135207800C72738302 @default.
- W2135207800 hasConceptScore W2135207800C74196217 @default.
- W2135207800 hasConceptScore W2135207800C78519656 @default.
- W2135207800 hasConceptScore W2135207800C78606066 @default.
- W2135207800 hasLocation W21352078001 @default.
- W2135207800 hasOpenAccess W2135207800 @default.
- W2135207800 hasPrimaryLocation W21352078001 @default.
- W2135207800 hasRelatedWork W1491130679 @default.
- W2135207800 hasRelatedWork W1521662128 @default.
- W2135207800 hasRelatedWork W1653560691 @default.
- W2135207800 hasRelatedWork W187182739 @default.
- W2135207800 hasRelatedWork W2006294436 @default.
- W2135207800 hasRelatedWork W2070221381 @default.
- W2135207800 hasRelatedWork W2090788361 @default.
- W2135207800 hasRelatedWork W2133210351 @default.
- W2135207800 hasRelatedWork W2164179960 @default.
- W2135207800 hasRelatedWork W2795373785 @default.
- W2135207800 hasRelatedWork W2885503092 @default.
- W2135207800 hasRelatedWork W2907177014 @default.
- W2135207800 hasRelatedWork W2930066829 @default.
- W2135207800 hasRelatedWork W2949138033 @default.
- W2135207800 hasRelatedWork W2963186440 @default.
- W2135207800 hasRelatedWork W2963317205 @default.
- W2135207800 hasRelatedWork W2999637090 @default.
- W2135207800 hasRelatedWork W3035936146 @default.
- W2135207800 hasRelatedWork W3104158023 @default.
- W2135207800 hasRelatedWork W594142043 @default.
- W2135207800 isParatext "false" @default.
- W2135207800 isRetracted "false" @default.
- W2135207800 magId "2135207800" @default.
- W2135207800 workType "article" @default.