Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135343798> ?p ?o ?g. }
- W2135343798 abstract "Author(s): Huang, Zijian | Advisor(s): Ma, Shujie | Abstract: In recent years, advanced technologies have enabled people to collect complex data and the analysis of such data can be challenging. My dissertation focuses on developing new methodologies and computational algorithms in non- and semi- parametric regression models to analyze complex and large scaled data. Chapter 1 introduces commonly used semiparametric models and their properties. Chapter 2 reviews B-splines approximation to the nonparametric functions. Chapter 3 provides an overview of methodologies including generalized estimating equations and mixed models, which are used to analyze correlated data. In chapter 4, we propose a flexible generalized semiparametric model for repeated measurements by combining generalized partially linear single index model with varying coefficient model. The proposed model is a useful analytic tool to explore dynamic patterns which naturally exist in longitudinal data and also study possible nonlinear relationships between the response and covariates. We then employ the quadratic inference function and develop an estimation procedure to estimate unknown regression parameters and nonparametric functions. To select variables and estimate parameters simultaneously, we further obtain penalized estimators. Moreover, we establish theoretical properties of the parametric and nonparametric estimators. Both simulations and an empirical example are presented to illustrate the use of the proposed model. In chapter 5, we propose a semiparametric model in genome-wide association studies (GWAS). The use of linear mixed models (LMMs) in GWAS is now widely accepted because LMMs have been shown to be capable of correcting for several forms of confounding due to genetic relatedness of sampled data. On the other hand, gene and environment (G × E) interactions play a pivotal role in determining the risk of human diseases. Conventional parametric models such as LMMs may not reflect the underlying nonlinear G × E interactions, which will result in serious bias. Therefore, we propose a semiparametric mixed model to investigate important gene associations in the context of possible nonlinear G × E interactions in GWAS. We further propose a profile maximum likelihood estimation procedure to estimate the parameters and nonparametric functions, and apply the restricted maximum likelihood estimation method to estimate the variance components. For these profile parameter and nonparametric function estimators, asymptotic consistency and normality are established. Moreover, the Rao-score-type test procedure is developed and a multiple testing process is employed to identify the important genetic factors. Both simulation studies and an empirical example are presented to illustrate the use of our proposed model and methods." @default.
- W2135343798 created "2016-06-24" @default.
- W2135343798 creator A5065327274 @default.
- W2135343798 date "2015-01-01" @default.
- W2135343798 modified "2023-09-27" @default.
- W2135343798 title "Semiparametric Modeling for Genome-Wide Association Studies and Repeated Measurements" @default.
- W2135343798 cites W124262366 @default.
- W2135343798 cites W135795571 @default.
- W2135343798 cites W1558165107 @default.
- W2135343798 cites W171065245 @default.
- W2135343798 cites W1824682467 @default.
- W2135343798 cites W1964032272 @default.
- W2135343798 cites W1965236914 @default.
- W2135343798 cites W1971231611 @default.
- W2135343798 cites W1974875084 @default.
- W2135343798 cites W1982894829 @default.
- W2135343798 cites W1995286197 @default.
- W2135343798 cites W2000303778 @default.
- W2135343798 cites W2002817851 @default.
- W2135343798 cites W2006503978 @default.
- W2135343798 cites W2021505842 @default.
- W2135343798 cites W2027655461 @default.
- W2135343798 cites W2041442087 @default.
- W2135343798 cites W2045901075 @default.
- W2135343798 cites W2046433337 @default.
- W2135343798 cites W2048475167 @default.
- W2135343798 cites W2054881132 @default.
- W2135343798 cites W2059126764 @default.
- W2135343798 cites W2066947937 @default.
- W2135343798 cites W2069541127 @default.
- W2135343798 cites W2071252194 @default.
- W2135343798 cites W2074682976 @default.
- W2135343798 cites W2077942806 @default.
- W2135343798 cites W2083384274 @default.
- W2135343798 cites W2084626053 @default.
- W2135343798 cites W2085129742 @default.
- W2135343798 cites W2086067392 @default.
- W2135343798 cites W2086205459 @default.
- W2135343798 cites W2087084610 @default.
- W2135343798 cites W2088486634 @default.
- W2135343798 cites W2093738981 @default.
- W2135343798 cites W2094607565 @default.
- W2135343798 cites W2096367725 @default.
- W2135343798 cites W2104603316 @default.
- W2135343798 cites W2121733369 @default.
- W2135343798 cites W2132609392 @default.
- W2135343798 cites W2135046866 @default.
- W2135343798 cites W2136175429 @default.
- W2135343798 cites W2138049103 @default.
- W2135343798 cites W2141916112 @default.
- W2135343798 cites W2142057247 @default.
- W2135343798 cites W2149860264 @default.
- W2135343798 cites W2153364456 @default.
- W2135343798 cites W2153531124 @default.
- W2135343798 cites W2162870748 @default.
- W2135343798 cites W2509991828 @default.
- W2135343798 cites W2556205749 @default.
- W2135343798 cites W2904730752 @default.
- W2135343798 cites W3099355155 @default.
- W2135343798 cites W3103736596 @default.
- W2135343798 cites W3105513009 @default.
- W2135343798 cites W3124067556 @default.
- W2135343798 cites W3141391145 @default.
- W2135343798 cites W2099175767 @default.
- W2135343798 hasPublicationYear "2015" @default.
- W2135343798 type Work @default.
- W2135343798 sameAs 2135343798 @default.
- W2135343798 citedByCount "0" @default.
- W2135343798 crossrefType "journal-article" @default.
- W2135343798 hasAuthorship W2135343798A5065327274 @default.
- W2135343798 hasConcept C102366305 @default.
- W2135343798 hasConcept C105795698 @default.
- W2135343798 hasConcept C117251300 @default.
- W2135343798 hasConcept C119043178 @default.
- W2135343798 hasConcept C119857082 @default.
- W2135343798 hasConcept C124101348 @default.
- W2135343798 hasConcept C149782125 @default.
- W2135343798 hasConcept C153720581 @default.
- W2135343798 hasConcept C154945302 @default.
- W2135343798 hasConcept C163175372 @default.
- W2135343798 hasConcept C185429906 @default.
- W2135343798 hasConcept C19539793 @default.
- W2135343798 hasConcept C24574437 @default.
- W2135343798 hasConcept C2776214188 @default.
- W2135343798 hasConcept C33923547 @default.
- W2135343798 hasConcept C41008148 @default.
- W2135343798 hasConcept C41587187 @default.
- W2135343798 hasConcept C78297888 @default.
- W2135343798 hasConceptScore W2135343798C102366305 @default.
- W2135343798 hasConceptScore W2135343798C105795698 @default.
- W2135343798 hasConceptScore W2135343798C117251300 @default.
- W2135343798 hasConceptScore W2135343798C119043178 @default.
- W2135343798 hasConceptScore W2135343798C119857082 @default.
- W2135343798 hasConceptScore W2135343798C124101348 @default.
- W2135343798 hasConceptScore W2135343798C149782125 @default.
- W2135343798 hasConceptScore W2135343798C153720581 @default.
- W2135343798 hasConceptScore W2135343798C154945302 @default.
- W2135343798 hasConceptScore W2135343798C163175372 @default.
- W2135343798 hasConceptScore W2135343798C185429906 @default.
- W2135343798 hasConceptScore W2135343798C19539793 @default.