Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135352920> ?p ?o ?g. }
- W2135352920 endingPage "4450" @default.
- W2135352920 startingPage "4440" @default.
- W2135352920 abstract "Purpose: The performance of various x-ray converters, employed in medical imaging systems, has been widely examined by several methodologies (experimental, analytical, and Monte Carlo techniques). The x-ray converters most frequently employed in energy integrating digital radiology detectors are the Gd2O2S:Tb granular phosphor, the CsI:Tl structured phosphor, and the a-Se photoconductor. The imaging characteristics of an x-ray converter are affected by its x-ray detection properties. However, various definitions of x-ray detection have been used in the literature, leading to different results for the quantum detection efficiency (QDE) for the same type of x-ray converter. For this reason, there is a need for accurate determination of the x-ray detection and, in particular, its relation to detector response. Methods: The present article reports on the performance of the three aforementioned x-ray converters in terms of the QDE and the x-ray statistical factor and examines the effect of the x-ray detection, directly related to converter output signal, on the zero-frequency DQE. For the purposes of this study, Monte Carlo simulation was used to model the x-ray interactions within the x-ray converter. Simulations were carried out in the energy range from 10 keV up to 80 keV and considering two layers of different coating weights (50 and 100 mg/cm2). The prediction and comparison of zero-frequency DQE were based on two different approaches for x-ray detection, i.e., (a) fraction of interacting photons and (b) fraction of photons leading to energy deposition. In addition, the effect of energy deposition through Compton scattering events on the DQE values was estimated. Results: Our results showed discrepancies between Monte Carlo techniques (based on energy deposition events) and analytical calculations (based on x-ray attenuation) on QDE. Discrepancies were found to range up to 10% for Gd2O2S:Tb (100 mg/cm2), 7.7% for CsI:Tl (50 mg/cm2), and 8.2% for a-Se (50 mg/cm2). Discrepancies were analyzed by examining the scattering effects (elastic and inelastic) within the converters and led to further analysis of scattering events on as well. Significant overestimations were found for both factors (QDE and ) on the zero-frequency DQE. Conclusions: Considering that the highest overestimation was found in the thin layer (50 mg/cm2), Monte Carlo evaluation showed that the overestimation (%) between DQE values (based on either x-ray interacting events or energy impartation events) was more significant at 20 keV for CsI:Tl (approximately 2.1%), at 40 keV for Gd2O2S:Tb (approximately 8.1%), and finally at 60 and 80 keV for a-Se converter (approximately 4.8 and 8.2%, respectively). Finally, the overestimation due to the effect of Compton scattering on DQE was found more significant for the a-Se converter and especially above 40 keV reaching approximately the value of 8.9% at 80 keV." @default.
- W2135352920 created "2016-06-24" @default.
- W2135352920 creator A5039816896 @default.
- W2135352920 creator A5085861741 @default.
- W2135352920 date "2011-06-30" @default.
- W2135352920 modified "2023-09-23" @default.
- W2135352920 title "Overestimations in zero frequency DQE of x-ray imaging converters assessed by Monte Carlo techniques based on the study of energy impartation events" @default.
- W2135352920 cites W1570881048 @default.
- W2135352920 cites W1639194122 @default.
- W2135352920 cites W1964048748 @default.
- W2135352920 cites W1968253286 @default.
- W2135352920 cites W1969244673 @default.
- W2135352920 cites W1969298369 @default.
- W2135352920 cites W1970019921 @default.
- W2135352920 cites W1973132483 @default.
- W2135352920 cites W1982938706 @default.
- W2135352920 cites W1994474714 @default.
- W2135352920 cites W1998290335 @default.
- W2135352920 cites W2002061905 @default.
- W2135352920 cites W2003185117 @default.
- W2135352920 cites W2004918177 @default.
- W2135352920 cites W2009680583 @default.
- W2135352920 cites W2012835920 @default.
- W2135352920 cites W2013061888 @default.
- W2135352920 cites W2016677405 @default.
- W2135352920 cites W2025716635 @default.
- W2135352920 cites W2027904117 @default.
- W2135352920 cites W2028078411 @default.
- W2135352920 cites W2028723524 @default.
- W2135352920 cites W2041404280 @default.
- W2135352920 cites W2046036356 @default.
- W2135352920 cites W2047831949 @default.
- W2135352920 cites W2054474575 @default.
- W2135352920 cites W2059206965 @default.
- W2135352920 cites W2064793342 @default.
- W2135352920 cites W2066528551 @default.
- W2135352920 cites W2068445024 @default.
- W2135352920 cites W2075676372 @default.
- W2135352920 cites W2076029021 @default.
- W2135352920 cites W2085863911 @default.
- W2135352920 cites W2088792765 @default.
- W2135352920 cites W2089896020 @default.
- W2135352920 cites W2101014945 @default.
- W2135352920 cites W2168677460 @default.
- W2135352920 doi "https://doi.org/10.1118/1.3603190" @default.
- W2135352920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21859045" @default.
- W2135352920 hasPublicationYear "2011" @default.
- W2135352920 type Work @default.
- W2135352920 sameAs 2135352920 @default.
- W2135352920 citedByCount "11" @default.
- W2135352920 countsByYear W21353529202012 @default.
- W2135352920 countsByYear W21353529202013 @default.
- W2135352920 countsByYear W21353529202015 @default.
- W2135352920 countsByYear W21353529202016 @default.
- W2135352920 countsByYear W21353529202018 @default.
- W2135352920 crossrefType "journal-article" @default.
- W2135352920 hasAuthorship W2135352920A5039816896 @default.
- W2135352920 hasAuthorship W2135352920A5085861741 @default.
- W2135352920 hasConcept C105795698 @default.
- W2135352920 hasConcept C115961682 @default.
- W2135352920 hasConcept C120665830 @default.
- W2135352920 hasConcept C121332964 @default.
- W2135352920 hasConcept C134093067 @default.
- W2135352920 hasConcept C146108262 @default.
- W2135352920 hasConcept C154945302 @default.
- W2135352920 hasConcept C159317903 @default.
- W2135352920 hasConcept C165801399 @default.
- W2135352920 hasConcept C19499675 @default.
- W2135352920 hasConcept C2778422915 @default.
- W2135352920 hasConcept C2778785133 @default.
- W2135352920 hasConcept C2779328170 @default.
- W2135352920 hasConcept C30475298 @default.
- W2135352920 hasConcept C33923547 @default.
- W2135352920 hasConcept C35655370 @default.
- W2135352920 hasConcept C41008148 @default.
- W2135352920 hasConcept C55020928 @default.
- W2135352920 hasConcept C62520636 @default.
- W2135352920 hasConcept C86169459 @default.
- W2135352920 hasConcept C94915269 @default.
- W2135352920 hasConceptScore W2135352920C105795698 @default.
- W2135352920 hasConceptScore W2135352920C115961682 @default.
- W2135352920 hasConceptScore W2135352920C120665830 @default.
- W2135352920 hasConceptScore W2135352920C121332964 @default.
- W2135352920 hasConceptScore W2135352920C134093067 @default.
- W2135352920 hasConceptScore W2135352920C146108262 @default.
- W2135352920 hasConceptScore W2135352920C154945302 @default.
- W2135352920 hasConceptScore W2135352920C159317903 @default.
- W2135352920 hasConceptScore W2135352920C165801399 @default.
- W2135352920 hasConceptScore W2135352920C19499675 @default.
- W2135352920 hasConceptScore W2135352920C2778422915 @default.
- W2135352920 hasConceptScore W2135352920C2778785133 @default.
- W2135352920 hasConceptScore W2135352920C2779328170 @default.
- W2135352920 hasConceptScore W2135352920C30475298 @default.
- W2135352920 hasConceptScore W2135352920C33923547 @default.
- W2135352920 hasConceptScore W2135352920C35655370 @default.
- W2135352920 hasConceptScore W2135352920C41008148 @default.
- W2135352920 hasConceptScore W2135352920C55020928 @default.
- W2135352920 hasConceptScore W2135352920C62520636 @default.