Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135604850> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2135604850 abstract "A particle method is presented for the numerical simulation of rarefied gas flows, based on the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) model of the Boltzmann equation. The simulation procedure includes consideration of rotational nonequilibrium, and enforces exact momentum and energy conservation for a mixture involving monatomic and diatomic species. This method is applied to the simulation of a nozzle flow of the type associated with cold-gas spacecraft thrusters, and flowfield characteristics are compared with experimental data as well as results from direct simulation Monte Carlo (DSMC) and Navier-Stokes simulations of the same flow. The ES-BGK method is shown to allow for a relatively high degree of accuracy in transitional flow regimes, while avoiding the intermolecular collision calculations which typically make the DSMC simulation of low Knudsen number flows prohibitively expensive. I. Introduction n te im the design and performance analysis of low-thrust spacecraft propulsion systems, various numerical simulation chniques may be employed to determine efficiency, thrust characteristics, or the potential for plume pingement and contamination on spacecraft surfaces. A particular challenge in the simulation of small thrusters involving a chemically inert neutral gas, such as electro-thermal or cold-gas thrusters, is the accurate consideration of a wide range of Knudsen number regimes. In a typical thruster of this type, gas is expelled through a convergentdivergent (Laval) nozzle into a near vacuum, with subsonic near-equilibrium flow in the convergent section of the nozzle. As the gas accelerates through the divergent section beyond the nozzle throat, a subsonic boundary layer grows along the wall, while a supersonic core-flow region exists around the nozzle centerline. The gas density continues to decrease with downstream distance through the nozzle, and rarefaction effects become more prominent within both the supersonic and subsonic regions. Here the gas velocity distribution begins to diverge significantly from the equilibrium limit, and thermal energy is increasingly distributed non-uniformly among the translational and internal degrees of freedom. Beyond the nozzle exit plane, these nonequilibrium effects continue to increase as the gas rapidly expands and thermal energy is converted into energy associated with bulk motion of the exhaust flow. Rotational freezing occurs due to the large gradients and low collision frequency, and the flow approaches the free molecular limit within a short distance of the nozzle exit, particularly at points far from the nozzle centerline. I The simulation of highly rarefied flows, as described above for the divergent nozzle region and plume, is typically performed using the direct simulation Monte Carlo (DSMC) method of Bird. 1 This method approximates a numerical solution to the Boltzmann equation – the governing equation for dilute gas flows based on a statistical representation of molecular velocities – by decoupling in time the collision and advection terms in the equation. A large number of particles, each representing a large number of atoms or molecules, are tracked through a computational grid, and are sorted into cells according to their location. During each time step, some fraction of the particles in a cell collide with each other, and probabilistic techniques are used for calculations of individual collisions. All particles are then moved through the grid according to assigned velocities, and particles are created or removed at inflow and outflow boundaries. Finally, macroscopic quantities are sampled by averaging various particle properties in each cell, and the process is then repeated at the next time step. The DSMC method has been shown to provide accurate solutions for highly rarefied nozzle and plume flows, 2" @default.
- W2135604850 created "2016-06-24" @default.
- W2135604850 creator A5029805261 @default.
- W2135604850 creator A5043184870 @default.
- W2135604850 date "2006-01-09" @default.
- W2135604850 modified "2023-09-26" @default.
- W2135604850 title "Evaluation of a Particle Method for the Ellipsoidal Statistical Bhatnagar-Gross-Krook Equation" @default.
- W2135604850 cites W1538135945 @default.
- W2135604850 cites W1965025288 @default.
- W2135604850 cites W1978158032 @default.
- W2135604850 cites W1997727640 @default.
- W2135604850 cites W2016037694 @default.
- W2135604850 cites W2019526023 @default.
- W2135604850 cites W2021312883 @default.
- W2135604850 cites W2023960455 @default.
- W2135604850 cites W2026812371 @default.
- W2135604850 cites W2069176341 @default.
- W2135604850 cites W2121384713 @default.
- W2135604850 cites W2312512828 @default.
- W2135604850 cites W2327382525 @default.
- W2135604850 cites W2335359303 @default.
- W2135604850 doi "https://doi.org/10.2514/6.2006-989" @default.
- W2135604850 hasPublicationYear "2006" @default.
- W2135604850 type Work @default.
- W2135604850 sameAs 2135604850 @default.
- W2135604850 citedByCount "29" @default.
- W2135604850 countsByYear W21356048502013 @default.
- W2135604850 countsByYear W21356048502014 @default.
- W2135604850 countsByYear W21356048502015 @default.
- W2135604850 countsByYear W21356048502016 @default.
- W2135604850 countsByYear W21356048502017 @default.
- W2135604850 countsByYear W21356048502018 @default.
- W2135604850 countsByYear W21356048502019 @default.
- W2135604850 countsByYear W21356048502020 @default.
- W2135604850 countsByYear W21356048502021 @default.
- W2135604850 countsByYear W21356048502023 @default.
- W2135604850 crossrefType "proceedings-article" @default.
- W2135604850 hasAuthorship W2135604850A5029805261 @default.
- W2135604850 hasAuthorship W2135604850A5043184870 @default.
- W2135604850 hasBestOaLocation W21356048502 @default.
- W2135604850 hasConcept C111368507 @default.
- W2135604850 hasConcept C121332964 @default.
- W2135604850 hasConcept C121864883 @default.
- W2135604850 hasConcept C127313418 @default.
- W2135604850 hasConcept C1276947 @default.
- W2135604850 hasConcept C2778517922 @default.
- W2135604850 hasConcept C28826006 @default.
- W2135604850 hasConcept C33923547 @default.
- W2135604850 hasConcept C41008148 @default.
- W2135604850 hasConcept C57489055 @default.
- W2135604850 hasConceptScore W2135604850C111368507 @default.
- W2135604850 hasConceptScore W2135604850C121332964 @default.
- W2135604850 hasConceptScore W2135604850C121864883 @default.
- W2135604850 hasConceptScore W2135604850C127313418 @default.
- W2135604850 hasConceptScore W2135604850C1276947 @default.
- W2135604850 hasConceptScore W2135604850C2778517922 @default.
- W2135604850 hasConceptScore W2135604850C28826006 @default.
- W2135604850 hasConceptScore W2135604850C33923547 @default.
- W2135604850 hasConceptScore W2135604850C41008148 @default.
- W2135604850 hasConceptScore W2135604850C57489055 @default.
- W2135604850 hasLocation W21356048501 @default.
- W2135604850 hasLocation W21356048502 @default.
- W2135604850 hasOpenAccess W2135604850 @default.
- W2135604850 hasPrimaryLocation W21356048501 @default.
- W2135604850 hasRelatedWork W1968754785 @default.
- W2135604850 hasRelatedWork W1982533357 @default.
- W2135604850 hasRelatedWork W1984321363 @default.
- W2135604850 hasRelatedWork W2029174178 @default.
- W2135604850 hasRelatedWork W2050061835 @default.
- W2135604850 hasRelatedWork W2052103030 @default.
- W2135604850 hasRelatedWork W2070249659 @default.
- W2135604850 hasRelatedWork W2140413243 @default.
- W2135604850 hasRelatedWork W2155810813 @default.
- W2135604850 hasRelatedWork W2485579448 @default.
- W2135604850 isParatext "false" @default.
- W2135604850 isRetracted "false" @default.
- W2135604850 magId "2135604850" @default.
- W2135604850 workType "article" @default.