Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135707410> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2135707410 endingPage "315" @default.
- W2135707410 startingPage "315" @default.
- W2135707410 abstract "LETTERS TO THE EDITORProtection of muscle membrane excitability during cycling in humans: a role for SGLT3?Timothy J. FairchildTimothy J. FairchildPublished Online:01 Jan 2008https://doi.org/10.1152/japplphysiol.00793.2007MoreSectionsPDF (32 KB)Download PDF ToolsExport citationAdd to favoritesGet permissionsTrack citations ShareShare onFacebookTwitterLinkedInEmailWeChat to the editor: Intracellular processes are known to be regulated by extracellular glucose concentration, although the precise mechanism/s by which this occurs remains to be established and may vary between tissues. One of the earliest identified “glucose-sensing” mechanisms is the glucose-induced insulin release from pancreatic beta cells (1). Insulin release from pancreatic beta cells appears to be mediated by cellular glucose catabolism and, more specifically, changes in ATP:ADP ratio, leading to inhibition of ATP-sensitive transmembrane K+ channels (KATP channel; Ref. 7), although other mechanisms are not precluded (3, 7).Glucose-induced changes in membrane potential are known to occur in other tissues that are reliant on glucose metabolism including glucose-sensitive and glucose-responsive neurons (5) and smooth muscle cells (6, 7). For instance, acute high glucose concentration (10–20 mM) has been shown to reduce KATP currents of the human omental artery (4), a mechanism proposed to operate via the production of superoxide and mediated by the activation of protein kinase C (PKC; Ref. 4). Interestingly, not unlike the pancreatic beta cells, the metabolism of the monosaccharide (d-glucose or fructose) seems critical for the change in membrane potential since l-glucose and other non-metabolizable sugars are without effect (6).Building on findings in the anaesthetized rat, a recent paper published in the Journal of Applied Physiology revealed that glucose may exert similar action on skeletal muscle membrane excitability during prolonged cycle exercise in humans (8). Prolonged cycling with oral glucose supplementation was associated with higher M-wave amplitude (mV) at 90 min (+50%) and at fatigue (+87%) compared with cycling without glucose supplementation. Importantly, glucose supplementation resulted in a significant elevation of blood glucose concentration. Additional measurements of maximal Na+-K+-ATPase activity confirmed an increase during glucose supplemented trials. Interestingly, the observed difference in M-wave properties between glucose supplemented exercise and non-glucose-supplemented exercise occurred independent of any differences in intramuscular substrates or metabolic responses investigated (8).While a possible role for the Na+/glucose cotransporter, SGLT3, has not previously been reported in these papers, recent characterization of human SGLT3 (hSGLT3) has revealed its function to be analogs to that of a “glucose sensor” (2). Indeed, electrophysiological assays showed that glucose induced a specific phlorizin-sensitive, Na+-dependent depolarization of the membrane potential, by up to 50 mV (2). Furthermore, hSGLT3 is expressed in the plasma membrane of human skeletal muscle at the neuromuscular junction and the glucose-induced inward currents demonstrated a linear association with glucose concentration (2). Finally, previous studies have demonstrated a high selectivity of SGLT3 for d-glucose (9) and while the exact intracellular cascade associated with SGLT3 is still being elucidated, the interaction between glucose transporters and PKC are well described. As such, the combined direct and indirect evidence have led previous researchers to suggest a role for SGLTs and specifically hSGLT3 in regulating muscle activity (2).In summary, the purpose of this letter is to highlight hSGLT3 as a possible candidate for the observed changes in membrane potential of skeletal muscle during periods of glucose-supplemented exercise (8).REFERENCES1 Charles MA, Lawecki J, Pictet R, Grodsky GM. Insulin secretion. Interrelationships of glucose, cyclic adenosine 3:5-monophosphate, and calcium. J Biol Chem 250: 6134–6140, 1975.Crossref | PubMed | ISI | Google Scholar2 Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright EM, Koepsell H. A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci USA 100: 11753–11758, 2003.Crossref | PubMed | ISI | Google Scholar3 Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49: 424–430, 2000.Crossref | PubMed | ISI | Google Scholar4 Kinoshita H, Azma T, Nakahata K, Iranami H, Kimoto Y, Dojo M, Yuge O, Hatano Y. Inhibitory effect of high concentration of glucose on relaxations to activation of ATP-sensitive K+ channels in human omental artery. Arterioscl Thromb Vasc Biol 24: 2290–2295, 2004.Crossref | PubMed | ISI | Google Scholar5 Levin BE, Dunn-Meynell AA, Routh VH. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am J Physiol Regul Integr Comp Physiol 276: R-1223-R1231, 1999.Google Scholar6 Rainbow RD, Hardy ME, Standen NB, Davies NW. Glucose reduces endothelin inhibition of voltage-gated potassium channels in rat arterial smooth muscle cells. J Physiol 575: 833–844, 2006.Crossref | PubMed | ISI | Google Scholar7 Rolland F, Winderickx J, Thevelein JM. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26: 310–317, 2001.Crossref | ISI | Google Scholar8 Stewart R, Duhamel T, Foley K, Ouyang J, Smith IC, Green HJ. Protection of muscle membrane excitability during prolonged cycle exercise with glucose supplementation. J Appl Physiol 103: 331–339, 2007. First published April 5, 2007; doi:10.1152/japplphysiol.01170.2006.Link | ISI | Google Scholar9 Voss AA, Dâiez-Sampedro A, Hirayama BA, Loo DD, Wright EM. Imino sugars are potent agonists of the human glucose sensor SGLT3. Mol Pharmacol 71: 628–634, 2007.Crossref | PubMed | ISI | Google ScholarAUTHOR NOTESAddress for reprint requests and other correspondence: T. J. Fairchild, Dept. of Exercise Science, Syracuse Univ., 820 Comstock Ave., Syracuse, New York 13244-5040 (e-mail: [email protected]) Download PDF Previous Back to Top Next FiguresReferencesRelatedInformationCited ByExpression of mRNA for glucose transport proteins in jejunum, liver, kidney and skeletal muscle of pigsJournal of Physiology and Biochemistry, Vol. 65, No. 3Reply to FairchildH. Green1 January 2008 | Journal of Applied Physiology, Vol. 104, No. 1 More from this issue > Volume 104Issue 1January 2008Pages 315-315 Copyright & PermissionsCopyright © 2008 the American Physiological Societyhttps://doi.org/10.1152/japplphysiol.00793.2007PubMed18198291History Published online 1 January 2008 Published in print 1 January 2008 Metrics" @default.
- W2135707410 created "2016-06-24" @default.
- W2135707410 creator A5069636006 @default.
- W2135707410 date "2008-01-01" @default.
- W2135707410 modified "2023-09-26" @default.
- W2135707410 title "Protection of muscle membrane excitability during cycling in humans: a role for SGLT3?" @default.
- W2135707410 cites W2066981289 @default.
- W2135707410 cites W2086812198 @default.
- W2135707410 cites W2097563667 @default.
- W2135707410 cites W2142900879 @default.
- W2135707410 cites W2153134360 @default.
- W2135707410 cites W2159579272 @default.
- W2135707410 cites W2166126592 @default.
- W2135707410 doi "https://doi.org/10.1152/japplphysiol.00793.2007" @default.
- W2135707410 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18198291" @default.
- W2135707410 hasPublicationYear "2008" @default.
- W2135707410 type Work @default.
- W2135707410 sameAs 2135707410 @default.
- W2135707410 citedByCount "2" @default.
- W2135707410 crossrefType "journal-article" @default.
- W2135707410 hasAuthorship W2135707410A5069636006 @default.
- W2135707410 hasConcept C126322002 @default.
- W2135707410 hasConcept C134018914 @default.
- W2135707410 hasConcept C161573976 @default.
- W2135707410 hasConcept C17093226 @default.
- W2135707410 hasConcept C181911157 @default.
- W2135707410 hasConcept C185592680 @default.
- W2135707410 hasConcept C2776970464 @default.
- W2135707410 hasConcept C2777866211 @default.
- W2135707410 hasConcept C2779306644 @default.
- W2135707410 hasConcept C28406088 @default.
- W2135707410 hasConcept C55493867 @default.
- W2135707410 hasConcept C62231903 @default.
- W2135707410 hasConcept C71924100 @default.
- W2135707410 hasConcept C79879829 @default.
- W2135707410 hasConcept C86803240 @default.
- W2135707410 hasConcept C95444343 @default.
- W2135707410 hasConceptScore W2135707410C126322002 @default.
- W2135707410 hasConceptScore W2135707410C134018914 @default.
- W2135707410 hasConceptScore W2135707410C161573976 @default.
- W2135707410 hasConceptScore W2135707410C17093226 @default.
- W2135707410 hasConceptScore W2135707410C181911157 @default.
- W2135707410 hasConceptScore W2135707410C185592680 @default.
- W2135707410 hasConceptScore W2135707410C2776970464 @default.
- W2135707410 hasConceptScore W2135707410C2777866211 @default.
- W2135707410 hasConceptScore W2135707410C2779306644 @default.
- W2135707410 hasConceptScore W2135707410C28406088 @default.
- W2135707410 hasConceptScore W2135707410C55493867 @default.
- W2135707410 hasConceptScore W2135707410C62231903 @default.
- W2135707410 hasConceptScore W2135707410C71924100 @default.
- W2135707410 hasConceptScore W2135707410C79879829 @default.
- W2135707410 hasConceptScore W2135707410C86803240 @default.
- W2135707410 hasConceptScore W2135707410C95444343 @default.
- W2135707410 hasIssue "1" @default.
- W2135707410 hasLocation W21357074101 @default.
- W2135707410 hasLocation W21357074102 @default.
- W2135707410 hasOpenAccess W2135707410 @default.
- W2135707410 hasPrimaryLocation W21357074101 @default.
- W2135707410 hasRelatedWork W1979204365 @default.
- W2135707410 hasRelatedWork W2006513370 @default.
- W2135707410 hasRelatedWork W2025042264 @default.
- W2135707410 hasRelatedWork W2081817671 @default.
- W2135707410 hasRelatedWork W2091361521 @default.
- W2135707410 hasRelatedWork W2096420073 @default.
- W2135707410 hasRelatedWork W2141640759 @default.
- W2135707410 hasRelatedWork W2223043162 @default.
- W2135707410 hasRelatedWork W2281673292 @default.
- W2135707410 hasRelatedWork W2410784692 @default.
- W2135707410 hasVolume "104" @default.
- W2135707410 isParatext "false" @default.
- W2135707410 isRetracted "false" @default.
- W2135707410 magId "2135707410" @default.
- W2135707410 workType "article" @default.