Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135736996> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2135736996 abstract "A novel de-noising method based on wavelet transform is presented based on the good localization characteristic of the wavelet transform both in time and frequency domain, which can make happen the extraction of visual evoked potentials in single training sample from the EEG background noise in favor of studying the changes between the single sample response. The information is probably related with the different function, appearance and pathologies of the brain. At the same time this method can also be used to remove those signal's artifacts that do not appear with EP within the same scope of time or frequency. The traditional Fourier filter can hardly attain the similar result. This method is different from other wavelet de-noising methods in that different criteria are employed in choosing wavelet coefficient. It has a biggest virtue of noting the differences among the single training sample and making use of the characteristics of being high time frequency resolution to reduce the effect of interference factors to a maximum extent within the time scope that EP appear. The experiment result proves that this method is not restricted by the signal-to-noise ratio of evoked potential and electroencephalograph and even can recognize instantaneous event under the condition of lower signal-to-noise ratio, as well as recognize more easily the samples, which evoked evident response. In addition, averaging methodology can dramatically reduce the number of record samples needed, thus avoiding the effect of behavior change during the recording process. This methodology pays attention to the differences among single training sample and also accomplishes the extraction of visual evoked potentials from single trainings sample. As a result, system speed and accuracy could be improved to a great extent if this methodology is applied to brain-computer interface system based on evoked responses." @default.
- W2135736996 created "2016-06-24" @default.
- W2135736996 creator A5020088480 @default.
- W2135736996 creator A5032327375 @default.
- W2135736996 date "2009-01-01" @default.
- W2135736996 modified "2023-09-27" @default.
- W2135736996 title "The Sample Feature Extraction of Visual Evoked Potentials Based on Wavelet Transform Technique" @default.
- W2135736996 cites W19243115 @default.
- W2135736996 cites W2072116332 @default.
- W2135736996 cites W2101865311 @default.
- W2135736996 cites W2122428227 @default.
- W2135736996 cites W2132984323 @default.
- W2135736996 cites W2149672823 @default.
- W2135736996 cites W2373272479 @default.
- W2135736996 cites W2925287637 @default.
- W2135736996 doi "https://doi.org/10.1109/etcs.2009.172" @default.
- W2135736996 hasPublicationYear "2009" @default.
- W2135736996 type Work @default.
- W2135736996 sameAs 2135736996 @default.
- W2135736996 citedByCount "0" @default.
- W2135736996 crossrefType "proceedings-article" @default.
- W2135736996 hasAuthorship W2135736996A5020088480 @default.
- W2135736996 hasAuthorship W2135736996A5032327375 @default.
- W2135736996 hasConcept C106131492 @default.
- W2135736996 hasConcept C115961682 @default.
- W2135736996 hasConcept C127162648 @default.
- W2135736996 hasConcept C153180895 @default.
- W2135736996 hasConcept C154945302 @default.
- W2135736996 hasConcept C185592680 @default.
- W2135736996 hasConcept C196216189 @default.
- W2135736996 hasConcept C198531522 @default.
- W2135736996 hasConcept C199360897 @default.
- W2135736996 hasConcept C2779843651 @default.
- W2135736996 hasConcept C28490314 @default.
- W2135736996 hasConcept C31972630 @default.
- W2135736996 hasConcept C32022120 @default.
- W2135736996 hasConcept C41008148 @default.
- W2135736996 hasConcept C43617362 @default.
- W2135736996 hasConcept C47432892 @default.
- W2135736996 hasConcept C52622490 @default.
- W2135736996 hasConcept C76155785 @default.
- W2135736996 hasConcept C99498987 @default.
- W2135736996 hasConceptScore W2135736996C106131492 @default.
- W2135736996 hasConceptScore W2135736996C115961682 @default.
- W2135736996 hasConceptScore W2135736996C127162648 @default.
- W2135736996 hasConceptScore W2135736996C153180895 @default.
- W2135736996 hasConceptScore W2135736996C154945302 @default.
- W2135736996 hasConceptScore W2135736996C185592680 @default.
- W2135736996 hasConceptScore W2135736996C196216189 @default.
- W2135736996 hasConceptScore W2135736996C198531522 @default.
- W2135736996 hasConceptScore W2135736996C199360897 @default.
- W2135736996 hasConceptScore W2135736996C2779843651 @default.
- W2135736996 hasConceptScore W2135736996C28490314 @default.
- W2135736996 hasConceptScore W2135736996C31972630 @default.
- W2135736996 hasConceptScore W2135736996C32022120 @default.
- W2135736996 hasConceptScore W2135736996C41008148 @default.
- W2135736996 hasConceptScore W2135736996C43617362 @default.
- W2135736996 hasConceptScore W2135736996C47432892 @default.
- W2135736996 hasConceptScore W2135736996C52622490 @default.
- W2135736996 hasConceptScore W2135736996C76155785 @default.
- W2135736996 hasConceptScore W2135736996C99498987 @default.
- W2135736996 hasLocation W21357369961 @default.
- W2135736996 hasOpenAccess W2135736996 @default.
- W2135736996 hasPrimaryLocation W21357369961 @default.
- W2135736996 hasRelatedWork W1973212107 @default.
- W2135736996 hasRelatedWork W2010686280 @default.
- W2135736996 hasRelatedWork W2014395068 @default.
- W2135736996 hasRelatedWork W2088158554 @default.
- W2135736996 hasRelatedWork W2141112789 @default.
- W2135736996 hasRelatedWork W2367537358 @default.
- W2135736996 hasRelatedWork W2609035398 @default.
- W2135736996 hasRelatedWork W2889989850 @default.
- W2135736996 hasRelatedWork W2942471066 @default.
- W2135736996 hasRelatedWork W3003836766 @default.
- W2135736996 isParatext "false" @default.
- W2135736996 isRetracted "false" @default.
- W2135736996 magId "2135736996" @default.
- W2135736996 workType "article" @default.