Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135771489> ?p ?o ?g. }
- W2135771489 endingPage "17014" @default.
- W2135771489 startingPage "17004" @default.
- W2135771489 abstract "To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ 1H Carr−Purcell−Meiboom−Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [1H, 13C]-d-glucose in ∼100% D2O, which yields CHD2 methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using 13C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952−2960). In this Article, NMR pulse schemes are presented to measure 1H CPMG relaxation dispersion profiles for CHD2 methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong 13C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrCr, for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone 15N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the 1H line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 ± 0.5) × 103 per second (i.e., τex = 64.7 ± 1.9 μs). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by 1H CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone 15N relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins." @default.
- W2135771489 created "2016-06-24" @default.
- W2135771489 creator A5041024225 @default.
- W2135771489 creator A5053909819 @default.
- W2135771489 creator A5058945791 @default.
- W2135771489 creator A5071376755 @default.
- W2135771489 date "2010-11-08" @default.
- W2135771489 modified "2023-10-15" @default.
- W2135771489 title "Probing Microsecond Time Scale Dynamics in Proteins by Methyl <sup>1</sup>H Carr−Purcell−Meiboom−Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrC<sup><i>r</i></sup>" @default.
- W2135771489 cites W1481418553 @default.
- W2135771489 cites W1487346929 @default.
- W2135771489 cites W1504202202 @default.
- W2135771489 cites W1563420247 @default.
- W2135771489 cites W1590359881 @default.
- W2135771489 cites W1594547339 @default.
- W2135771489 cites W1672348181 @default.
- W2135771489 cites W1934365823 @default.
- W2135771489 cites W1965676565 @default.
- W2135771489 cites W1972403855 @default.
- W2135771489 cites W1973196144 @default.
- W2135771489 cites W1976270316 @default.
- W2135771489 cites W1977179882 @default.
- W2135771489 cites W1978024591 @default.
- W2135771489 cites W1978773252 @default.
- W2135771489 cites W1981159786 @default.
- W2135771489 cites W1981596913 @default.
- W2135771489 cites W1984830795 @default.
- W2135771489 cites W1984835290 @default.
- W2135771489 cites W1987528091 @default.
- W2135771489 cites W1988058873 @default.
- W2135771489 cites W1992577725 @default.
- W2135771489 cites W1994939140 @default.
- W2135771489 cites W1996014925 @default.
- W2135771489 cites W1998574759 @default.
- W2135771489 cites W2000693939 @default.
- W2135771489 cites W2000809907 @default.
- W2135771489 cites W2001575435 @default.
- W2135771489 cites W2004252276 @default.
- W2135771489 cites W2008318592 @default.
- W2135771489 cites W2009337785 @default.
- W2135771489 cites W2011516085 @default.
- W2135771489 cites W2011845231 @default.
- W2135771489 cites W2013593586 @default.
- W2135771489 cites W2015128676 @default.
- W2135771489 cites W2018805556 @default.
- W2135771489 cites W2020695579 @default.
- W2135771489 cites W2023168641 @default.
- W2135771489 cites W2025517394 @default.
- W2135771489 cites W2028037675 @default.
- W2135771489 cites W2029376242 @default.
- W2135771489 cites W2033003502 @default.
- W2135771489 cites W2033762168 @default.
- W2135771489 cites W2035097746 @default.
- W2135771489 cites W2036190761 @default.
- W2135771489 cites W2045143386 @default.
- W2135771489 cites W2046002103 @default.
- W2135771489 cites W2046452853 @default.
- W2135771489 cites W2047552955 @default.
- W2135771489 cites W2047695660 @default.
- W2135771489 cites W2048822589 @default.
- W2135771489 cites W2050187607 @default.
- W2135771489 cites W2051320244 @default.
- W2135771489 cites W2053004995 @default.
- W2135771489 cites W2055497972 @default.
- W2135771489 cites W2055557864 @default.
- W2135771489 cites W2062729099 @default.
- W2135771489 cites W2064579810 @default.
- W2135771489 cites W2064746618 @default.
- W2135771489 cites W2065769761 @default.
- W2135771489 cites W2066961392 @default.
- W2135771489 cites W2068227670 @default.
- W2135771489 cites W2068245217 @default.
- W2135771489 cites W2070471621 @default.
- W2135771489 cites W2074856155 @default.
- W2135771489 cites W2076283593 @default.
- W2135771489 cites W2077407469 @default.
- W2135771489 cites W2077478723 @default.
- W2135771489 cites W2083144176 @default.
- W2135771489 cites W2083313302 @default.
- W2135771489 cites W2084295374 @default.
- W2135771489 cites W2089201024 @default.
- W2135771489 cites W2103211563 @default.
- W2135771489 cites W2104384929 @default.
- W2135771489 cites W2132175461 @default.
- W2135771489 cites W2134742468 @default.
- W2135771489 cites W2147281292 @default.
- W2135771489 cites W2157530469 @default.
- W2135771489 cites W2159436122 @default.
- W2135771489 cites W2165849976 @default.
- W2135771489 cites W2169821755 @default.
- W2135771489 cites W240415867 @default.
- W2135771489 cites W2497645 @default.
- W2135771489 cites W30334872 @default.
- W2135771489 cites W384364580 @default.
- W2135771489 cites W4254297188 @default.
- W2135771489 doi "https://doi.org/10.1021/ja107410x" @default.
- W2135771489 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2991065" @default.
- W2135771489 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21058670" @default.