Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135914024> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2135914024 abstract "HomeHypertensionVol. 41, No. 3Does Sildenafil Indirectly Inhibit Phosphodiesterase 3 in Vascular Smooth Muscle? Free AccessLetterPDF/EPUBAboutView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toFree AccessLetterPDF/EPUBDoes Sildenafil Indirectly Inhibit Phosphodiesterase 3 in Vascular Smooth Muscle? Donald H. Maurice Donald H. MauriceDonald H. Maurice Career Investigator, Heart and Stroke Foundation of Ontario, Associate Professor of Pharmacology and Toxicology, Queen’s University, Kingston, Ontario, Canada, E-mail Search for more papers by this author Originally published10 Feb 2003https://doi.org/10.1161/01.HYP.0000054979.81019.0AHypertension. 2003;41:e2Other version(s) of this articleYou are viewing the most recent version of this article. Previous versions: February 10, 2003: Previous Version 1 To the Editor:I read with great interest the recent report by Schalcher et al, entitled “Interaction of Sildenafil With cAMP-Mediated Vasodilation In Vivo.”1 The data presented deals with a potentially important issue and, given the increasing interest in using phosphodiesterase 5 (PDE5) inhibitors for various conditions, in addition to erectile dysfunction, are also timely. As a researcher studying the role of cyclic nucleotide phosphodiesterases (PDEs) in cardiovascular tissues, I would like to take this opportunity to comment on some of the statements made in the discussion of these data. First, since a considerable literature describing the importance of interactions between cGMP and cAMP hydrolyzing PDEs has accumulated in recent years, the finding that sildenafil and cAMP-dependent vasodilators interacted to regulate forearm blood flow (FBF) in this study should, perhaps, not have been described as “unexpected.”2 In earlier work, Dr Richard Haslam and I reported that cGMP elevating agents (for example nitroprusside) increased cAMP through a cGMP-dependent inhibition of the cAMP-hydrolyzing phosphodiesterase 3 (PDE3) in blood platelets and arterial smooth muscle.3–5 This effect of cGMP on cAMP hydrolysis in these cells allowed a marked synergistic increase in platelet or smooth muscle cAMP when activators of adenylyl cyclase and guanylyl cyclase were used together, as well as a cAMP-dependent synergistic inhibition of blood platelet aggregation and arterial smooth muscle contraction. More recently, similar reports have described this effect in cardiac myocytes and mesangial cells,6,7 perhaps indicating that interactions between cGMP and cAMP are important in several cell types and challenging the concept that the cAMP and cGMP signaling cascades operate as parallel and independent systems. Second, although the interaction between sildenafil and isoprenaline, an activator of adenylyl cyclase, described by Schalcher and colleagues is consistent with a role for PDE3 in mediating the interaction between the compounds on forearm blood flow (FBF), the documented interaction with milrinone, a PDE3 inhibitor, is not. Indeed, if sildenafil and milrinone ultimately each had their effects by inhibiting PDE3, their combination would have been sub-additive, not additive, as reported in Figure 2. In contrast, presentation of this same data after controlling for the basal effect of sildenafil on flow, as depicted in Figure 3, is consistent with an effect of a sildenafil-mediated, cGMP-dependent inhibition of PDE3. Perhaps an inhibitor of adenylyl cyclase activity would be helpful in clarifying the issue of mechanism. Third, while Schalcher and colleagues correctly state that PDE5 is not expressed in cardiac myocytes, they suggest that sildenafil could potentially inhibit cardiac PDE3 indirectly by increasing plasma cGMP levels. Since plasma cGMP accumulates as a result of its extrusion from cells and would not be taken up from the circulation by cardiac myocytes, or any other cell, this possible indirect effect of sildenafil on cardiac PDE3 in highly unlikely to occur.1 Schalcher C, Schad K, Brunner-La Rocca HP, Schindler R, Oechslin E, Scharf C, Suetsch G, Bertel O, Kiowski W. Interaction of sildenafil with cAMP-mediated vasodilation in vivo. Hypertension. 2002; 40: 763–767.LinkGoogle Scholar2 Lugnier C. Cyclic nucleotide phosphodiesterase families in intracellular signaling and diabetes. Adv Exp Med Biol. 2001; 498: 253–261.CrossrefMedlineGoogle Scholar3 Maurice DH, Haslam RJ. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol. 1990; 37: 671–681.MedlineGoogle Scholar4 Maurice DH, Haslam RJ. Nitroprusside enhances isoprenaline-induced increases in cAMP in rat aortic smooth muscle. Eur J Pharmacol. 1990; 191: 471–475.CrossrefMedlineGoogle Scholar5 Maurice DH, Crankshaw D, Haslam RJ. Synergistic actions of nitrovasodilators and isoprenaline on rat aortic smooth muscle. Eur J Pharmacol. 1991; 192: 235–242.CrossrefMedlineGoogle Scholar6 Kirstein M, Rivet-Bastide M, Hatem S, Benardeau A, Mercadier JJ, Fischmeister R. Nitric oxide regulates the calcium current in isolated human atrial myocytes. J Clin Invest. 1995; 95: 794–802.CrossrefMedlineGoogle Scholar7 Sandner P, Kornfeld M, Ruan X, Arendshorst WJ, Kurtz A. Nitric oxide/cAMP interactions in the control of rat renal vascular resistance. Circ Res. 1999; 84: 186–192.CrossrefMedlineGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsCited By Quadir S, Cottone P and Sabino V (2019) Role of Sigma Receptors in Alcohol Addiction, Frontiers in Pharmacology, 10.3389/fphar.2019.00687, 10 March 2003Vol 41, Issue 3 Advertisement Article InformationMetrics https://doi.org/10.1161/01.HYP.0000054979.81019.0APMID: 12623968 Originally publishedFebruary 10, 2003 PDF download Advertisement SubjectsCell Signaling/Signal TransductionCongenital Heart DiseaseEndothelium/Vascular Type/Nitric OxidePharmacologySmooth Muscle Proliferation and Differentiation" @default.
- W2135914024 created "2016-06-24" @default.
- W2135914024 creator A5044655061 @default.
- W2135914024 date "2003-03-01" @default.
- W2135914024 modified "2023-09-27" @default.
- W2135914024 title "Does Sildenafil Indirectly Inhibit Phosphodiesterase 3 in Vascular Smooth Muscle?" @default.
- W2135914024 cites W135926665 @default.
- W2135914024 cites W2027778775 @default.
- W2135914024 cites W2047354087 @default.
- W2135914024 cites W2122773110 @default.
- W2135914024 cites W2168376873 @default.
- W2135914024 doi "https://doi.org/10.1161/01.hyp.0000054979.81019.0a" @default.
- W2135914024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12623968" @default.
- W2135914024 hasPublicationYear "2003" @default.
- W2135914024 type Work @default.
- W2135914024 sameAs 2135914024 @default.
- W2135914024 citedByCount "1" @default.
- W2135914024 countsByYear W21359140242019 @default.
- W2135914024 crossrefType "journal-article" @default.
- W2135914024 hasAuthorship W2135914024A5044655061 @default.
- W2135914024 hasBestOaLocation W21359140241 @default.
- W2135914024 hasConcept C120770815 @default.
- W2135914024 hasConcept C126322002 @default.
- W2135914024 hasConcept C134018914 @default.
- W2135914024 hasConcept C164705383 @default.
- W2135914024 hasConcept C173803235 @default.
- W2135914024 hasConcept C181199279 @default.
- W2135914024 hasConcept C185592680 @default.
- W2135914024 hasConcept C2776768464 @default.
- W2135914024 hasConcept C2779395532 @default.
- W2135914024 hasConcept C2779929075 @default.
- W2135914024 hasConcept C2992686903 @default.
- W2135914024 hasConcept C519581460 @default.
- W2135914024 hasConcept C55493867 @default.
- W2135914024 hasConcept C62826618 @default.
- W2135914024 hasConcept C71924100 @default.
- W2135914024 hasConcept C74534348 @default.
- W2135914024 hasConcept C98274493 @default.
- W2135914024 hasConceptScore W2135914024C120770815 @default.
- W2135914024 hasConceptScore W2135914024C126322002 @default.
- W2135914024 hasConceptScore W2135914024C134018914 @default.
- W2135914024 hasConceptScore W2135914024C164705383 @default.
- W2135914024 hasConceptScore W2135914024C173803235 @default.
- W2135914024 hasConceptScore W2135914024C181199279 @default.
- W2135914024 hasConceptScore W2135914024C185592680 @default.
- W2135914024 hasConceptScore W2135914024C2776768464 @default.
- W2135914024 hasConceptScore W2135914024C2779395532 @default.
- W2135914024 hasConceptScore W2135914024C2779929075 @default.
- W2135914024 hasConceptScore W2135914024C2992686903 @default.
- W2135914024 hasConceptScore W2135914024C519581460 @default.
- W2135914024 hasConceptScore W2135914024C55493867 @default.
- W2135914024 hasConceptScore W2135914024C62826618 @default.
- W2135914024 hasConceptScore W2135914024C71924100 @default.
- W2135914024 hasConceptScore W2135914024C74534348 @default.
- W2135914024 hasConceptScore W2135914024C98274493 @default.
- W2135914024 hasIssue "3" @default.
- W2135914024 hasLocation W21359140241 @default.
- W2135914024 hasLocation W21359140242 @default.
- W2135914024 hasOpenAccess W2135914024 @default.
- W2135914024 hasPrimaryLocation W21359140241 @default.
- W2135914024 hasRelatedWork W114088292 @default.
- W2135914024 hasRelatedWork W1495737757 @default.
- W2135914024 hasRelatedWork W2021170620 @default.
- W2135914024 hasRelatedWork W2067313134 @default.
- W2135914024 hasRelatedWork W2144857365 @default.
- W2135914024 hasRelatedWork W2330806185 @default.
- W2135914024 hasRelatedWork W2355830709 @default.
- W2135914024 hasRelatedWork W2605367962 @default.
- W2135914024 hasRelatedWork W3013694463 @default.
- W2135914024 hasRelatedWork W3033426723 @default.
- W2135914024 hasVolume "41" @default.
- W2135914024 isParatext "false" @default.
- W2135914024 isRetracted "false" @default.
- W2135914024 magId "2135914024" @default.
- W2135914024 workType "article" @default.