Matches in SemOpenAlex for { <https://semopenalex.org/work/W2135995502> ?p ?o ?g. }
- W2135995502 endingPage "1269" @default.
- W2135995502 startingPage "1241" @default.
- W2135995502 abstract "Fe–Mg exchange is the most important solid solution involved in partial melting of spinel lherzolite, and the system CaO–MgO–Al2O3–SiO2–FeO (CMASF) is ideally suited to explore this type of exchange during mantle melting. Also, if primary mid-ocean ridge basalts are largely generated in the spinel lherzolite stability field by near-fractional fusion, then Na and other highly incompatible elements will early on become depleted in the source, and the melting behaviour of mantle lherzolite should resemble the melting behaviour of simplified lherzolite in the CMASF system. We have determined the isobarically univariant melting relations of the lherzolite phase assemblage in the CMASF system in the 0·7–2·8 GPa pressure range. Isobarically, for every 1 wt % increase in the FeO content of the melt in equilibrium with the lherzolite phase assemblage, the equilibrium temperature is lower by about 3–5°C. Relative to the solidus of model lherzolite in the CaO–MgO–Al2O3–SiO2 system, melt compositions in the CMASF system are displaced slightly towards the alkalic side of the basalt tetrahedron. The transition on the solidus from spinel to plagioclase lherzolite has a positive Clapeyron slope with the spinel lherzolite assemblage on the high-temperature side, and has an almost identical position in P–T space to the comparable transition in the CaO–MgO–Al2O3–SiO2–Na2O (CMASN) system. When the compositions of all phases are described mathematically and used to model the generation of primary basalts, temperature and melt composition changes are small as percent melting increases. More specifically, 10% melting takes place over 1·5–2°C, melt compositions are relatively insensitive to the degree of melting and bulk composition, and equilibrium and near-fractional melting yield similar melt compositions. FeO and MgO are the oxides that exhibit the greatest change in the melt with degree of melting and bulk composition. The amount of FeO decreases with increasing degree of melting, whereas the amount of MgO increases. The coefficients for Fe–Mg exchange between the coexisting crystalline phases and melt, KdFe–Mgxl–liq, show a relatively simple and predictable behaviour with pressure and temperature: the coefficients for olivine and spinel do not show significant dependence on temperature, whereas the coefficients for orthopyroxene and clinopyroxene increase with pressure and temperature. When melting of lherzolite is modeled in the CMASF system, a strong linear correlation is observed between the mg-number of the lherzolite and the mg-number of the near-solidus melts. Comparison with melting in the CMASN system indicates that Na2O has a strong effect on lherzolite melting behaviour only at small degrees of melting." @default.
- W2135995502 created "2016-06-24" @default.
- W2135995502 creator A5000082320 @default.
- W2135995502 creator A5001129915 @default.
- W2135995502 date "2000-08-01" @default.
- W2135995502 modified "2023-09-26" @default.
- W2135995502 title "Melting Behaviour of Model Lherzolite in the System CaO–MgO–Al2O3–SiO2–FeO at 0·7–2·8 GPa" @default.
- W2135995502 cites W113677040 @default.
- W2135995502 cites W1561193515 @default.
- W2135995502 cites W1966593827 @default.
- W2135995502 cites W1968848349 @default.
- W2135995502 cites W1969859799 @default.
- W2135995502 cites W1970516126 @default.
- W2135995502 cites W1970548478 @default.
- W2135995502 cites W1970767963 @default.
- W2135995502 cites W1976257460 @default.
- W2135995502 cites W1978533014 @default.
- W2135995502 cites W1978978739 @default.
- W2135995502 cites W1981346790 @default.
- W2135995502 cites W1983248190 @default.
- W2135995502 cites W1990740187 @default.
- W2135995502 cites W1990814837 @default.
- W2135995502 cites W1995604959 @default.
- W2135995502 cites W1997468498 @default.
- W2135995502 cites W1999516718 @default.
- W2135995502 cites W2001708826 @default.
- W2135995502 cites W2003033703 @default.
- W2135995502 cites W2005292145 @default.
- W2135995502 cites W2010328184 @default.
- W2135995502 cites W2011360320 @default.
- W2135995502 cites W2012023697 @default.
- W2135995502 cites W2016701904 @default.
- W2135995502 cites W2017151315 @default.
- W2135995502 cites W2023459818 @default.
- W2135995502 cites W2038858200 @default.
- W2135995502 cites W2042832983 @default.
- W2135995502 cites W2044128687 @default.
- W2135995502 cites W2052473341 @default.
- W2135995502 cites W2052875168 @default.
- W2135995502 cites W2063205632 @default.
- W2135995502 cites W2073456062 @default.
- W2135995502 cites W2073561093 @default.
- W2135995502 cites W2074072796 @default.
- W2135995502 cites W2076755830 @default.
- W2135995502 cites W2078776785 @default.
- W2135995502 cites W2078822087 @default.
- W2135995502 cites W2094483243 @default.
- W2135995502 cites W2116892955 @default.
- W2135995502 cites W2133702463 @default.
- W2135995502 cites W2145237455 @default.
- W2135995502 cites W2158204079 @default.
- W2135995502 cites W2170746611 @default.
- W2135995502 cites W2503386386 @default.
- W2135995502 cites W2886385614 @default.
- W2135995502 cites W2988069831 @default.
- W2135995502 doi "https://doi.org/10.1093/petrology/41.8.1241" @default.
- W2135995502 hasPublicationYear "2000" @default.
- W2135995502 type Work @default.
- W2135995502 sameAs 2135995502 @default.
- W2135995502 citedByCount "66" @default.
- W2135995502 countsByYear W21359955022012 @default.
- W2135995502 countsByYear W21359955022013 @default.
- W2135995502 countsByYear W21359955022014 @default.
- W2135995502 countsByYear W21359955022015 @default.
- W2135995502 countsByYear W21359955022016 @default.
- W2135995502 countsByYear W21359955022017 @default.
- W2135995502 countsByYear W21359955022018 @default.
- W2135995502 countsByYear W21359955022020 @default.
- W2135995502 countsByYear W21359955022021 @default.
- W2135995502 countsByYear W21359955022023 @default.
- W2135995502 crossrefType "journal-article" @default.
- W2135995502 hasAuthorship W2135995502A5000082320 @default.
- W2135995502 hasAuthorship W2135995502A5001129915 @default.
- W2135995502 hasBestOaLocation W21359955021 @default.
- W2135995502 hasConcept C127313418 @default.
- W2135995502 hasConcept C151730666 @default.
- W2135995502 hasConcept C161509811 @default.
- W2135995502 hasConcept C163686574 @default.
- W2135995502 hasConcept C17409809 @default.
- W2135995502 hasConcept C191897082 @default.
- W2135995502 hasConcept C192562407 @default.
- W2135995502 hasConcept C199289684 @default.
- W2135995502 hasConcept C23693375 @default.
- W2135995502 hasConcept C2776230739 @default.
- W2135995502 hasConcept C2780026712 @default.
- W2135995502 hasConcept C2780364934 @default.
- W2135995502 hasConcept C67236022 @default.
- W2135995502 hasConcept C79572550 @default.
- W2135995502 hasConceptScore W2135995502C127313418 @default.
- W2135995502 hasConceptScore W2135995502C151730666 @default.
- W2135995502 hasConceptScore W2135995502C161509811 @default.
- W2135995502 hasConceptScore W2135995502C163686574 @default.
- W2135995502 hasConceptScore W2135995502C17409809 @default.
- W2135995502 hasConceptScore W2135995502C191897082 @default.
- W2135995502 hasConceptScore W2135995502C192562407 @default.
- W2135995502 hasConceptScore W2135995502C199289684 @default.
- W2135995502 hasConceptScore W2135995502C23693375 @default.
- W2135995502 hasConceptScore W2135995502C2776230739 @default.