Matches in SemOpenAlex for { <https://semopenalex.org/work/W2136009263> ?p ?o ?g. }
- W2136009263 endingPage "4429" @default.
- W2136009263 startingPage "4420" @default.
- W2136009263 abstract "Neural networks (NNs) are an effective tool to model nonlinear systems. However, their forecasting performance significantly drops in the presence of process uncertainties and disturbances. NN-based prediction intervals (PIs) offer an alternative solution to appropriately quantify uncertainties and disturbances associated with point forecasts. In this paper, an NN ensemble procedure is proposed to construct quality PIs. A recently developed lower-upper bound estimation method is applied to develop NN-based PIs. Then, constructed PIs from the NN ensemble members are combined using a weighted averaging mechanism. Simulated annealing and a genetic algorithm are used to optimally adjust the weights for the aggregation mechanism. The proposed method is examined for three different case studies. Simulation results reveal that the proposed method improves the average PI quality of individual NNs by 22%, 18%, and 78% for the first, second, and third case studies, respectively. The simulation study also demonstrates that a 3%-4% improvement in the quality of PIs can be achieved using the proposed method compared to the simple averaging aggregation method." @default.
- W2136009263 created "2016-06-24" @default.
- W2136009263 creator A5015293969 @default.
- W2136009263 creator A5021955558 @default.
- W2136009263 creator A5046519614 @default.
- W2136009263 creator A5059557438 @default.
- W2136009263 date "2015-07-01" @default.
- W2136009263 modified "2023-09-23" @default.
- W2136009263 title "Improving the Quality of Prediction Intervals Through Optimal Aggregation" @default.
- W2136009263 cites W1560021816 @default.
- W2136009263 cites W1760543581 @default.
- W2136009263 cites W1968987968 @default.
- W2136009263 cites W1971241355 @default.
- W2136009263 cites W1972743459 @default.
- W2136009263 cites W1978012705 @default.
- W2136009263 cites W1986451594 @default.
- W2136009263 cites W2019157375 @default.
- W2136009263 cites W2027902935 @default.
- W2136009263 cites W2028039937 @default.
- W2136009263 cites W2028147019 @default.
- W2136009263 cites W2028657921 @default.
- W2136009263 cites W2032442397 @default.
- W2136009263 cites W2034544282 @default.
- W2136009263 cites W2037634800 @default.
- W2136009263 cites W2039710193 @default.
- W2136009263 cites W2046813720 @default.
- W2136009263 cites W2059315199 @default.
- W2136009263 cites W2060621271 @default.
- W2136009263 cites W2063217171 @default.
- W2136009263 cites W2066874421 @default.
- W2136009263 cites W2075157159 @default.
- W2136009263 cites W2088265251 @default.
- W2136009263 cites W2095777320 @default.
- W2136009263 cites W2098232174 @default.
- W2136009263 cites W2099105607 @default.
- W2136009263 cites W2102274337 @default.
- W2136009263 cites W2108647521 @default.
- W2136009263 cites W2115755783 @default.
- W2136009263 cites W2121893229 @default.
- W2136009263 cites W2122568144 @default.
- W2136009263 cites W2127811554 @default.
- W2136009263 cites W2132477882 @default.
- W2136009263 cites W2134425046 @default.
- W2136009263 cites W2135293965 @default.
- W2136009263 cites W2136026143 @default.
- W2136009263 cites W2137006212 @default.
- W2136009263 cites W2137918734 @default.
- W2136009263 cites W2155816288 @default.
- W2136009263 cites W2158360161 @default.
- W2136009263 cites W2169814901 @default.
- W2136009263 cites W2171666055 @default.
- W2136009263 cites W4254155588 @default.
- W2136009263 doi "https://doi.org/10.1109/tie.2014.2383994" @default.
- W2136009263 hasPublicationYear "2015" @default.
- W2136009263 type Work @default.
- W2136009263 sameAs 2136009263 @default.
- W2136009263 citedByCount "50" @default.
- W2136009263 countsByYear W21360092632015 @default.
- W2136009263 countsByYear W21360092632016 @default.
- W2136009263 countsByYear W21360092632017 @default.
- W2136009263 countsByYear W21360092632018 @default.
- W2136009263 countsByYear W21360092632019 @default.
- W2136009263 countsByYear W21360092632020 @default.
- W2136009263 countsByYear W21360092632021 @default.
- W2136009263 countsByYear W21360092632022 @default.
- W2136009263 countsByYear W21360092632023 @default.
- W2136009263 crossrefType "journal-article" @default.
- W2136009263 hasAuthorship W2136009263A5015293969 @default.
- W2136009263 hasAuthorship W2136009263A5021955558 @default.
- W2136009263 hasAuthorship W2136009263A5046519614 @default.
- W2136009263 hasAuthorship W2136009263A5059557438 @default.
- W2136009263 hasConcept C111472728 @default.
- W2136009263 hasConcept C111919701 @default.
- W2136009263 hasConcept C11413529 @default.
- W2136009263 hasConcept C119857082 @default.
- W2136009263 hasConcept C119898033 @default.
- W2136009263 hasConcept C121332964 @default.
- W2136009263 hasConcept C124101348 @default.
- W2136009263 hasConcept C126255220 @default.
- W2136009263 hasConcept C126980161 @default.
- W2136009263 hasConcept C138885662 @default.
- W2136009263 hasConcept C154945302 @default.
- W2136009263 hasConcept C158622935 @default.
- W2136009263 hasConcept C2779530757 @default.
- W2136009263 hasConcept C33923547 @default.
- W2136009263 hasConcept C41008148 @default.
- W2136009263 hasConcept C50644808 @default.
- W2136009263 hasConcept C62520636 @default.
- W2136009263 hasConcept C8880873 @default.
- W2136009263 hasConcept C98045186 @default.
- W2136009263 hasConceptScore W2136009263C111472728 @default.
- W2136009263 hasConceptScore W2136009263C111919701 @default.
- W2136009263 hasConceptScore W2136009263C11413529 @default.
- W2136009263 hasConceptScore W2136009263C119857082 @default.
- W2136009263 hasConceptScore W2136009263C119898033 @default.
- W2136009263 hasConceptScore W2136009263C121332964 @default.
- W2136009263 hasConceptScore W2136009263C124101348 @default.
- W2136009263 hasConceptScore W2136009263C126255220 @default.