Matches in SemOpenAlex for { <https://semopenalex.org/work/W2136261952> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2136261952 endingPage "1392" @default.
- W2136261952 startingPage "1385" @default.
- W2136261952 abstract "Metric learning has been shown to significantly improve the accuracy of k-nearest neighbor (kNN) classification. In problems involving thousands of features, distance learning algorithms cannot be used due to overfitting and high computational complexity. In such cases, previous work has relied on a two-step solution: first apply dimensionality reduction methods to the data, and then learn a metric in the resulting low-dimensional subspace. In this paper we show that better classification performance can be achieved by unifying the objectives of dimensionality reduction and metric learning. We propose a method that solves for the low-dimensional projection of the inputs, which minimizes a metric objective aimed at separating points in different classes by a large margin. This projection is defined by a significantly smaller number of parameters than metrics learned in input space, and thus our optimization reduces the risks of overfitting. Theory and results are presented for both a linear as well as a kernelized version of the algorithm. Overall, we achieve classification rates similar, and in several cases superior, to those of support vector machines." @default.
- W2136261952 created "2016-06-24" @default.
- W2136261952 creator A5062270059 @default.
- W2136261952 creator A5082736347 @default.
- W2136261952 date "2007-09-07" @default.
- W2136261952 modified "2023-10-09" @default.
- W2136261952 title "Large Margin Component Analysis" @default.
- W2136261952 cites W1590012787 @default.
- W2136261952 cites W1976618413 @default.
- W2136261952 cites W2001619934 @default.
- W2136261952 cites W2091632079 @default.
- W2136261952 cites W2104752854 @default.
- W2136261952 cites W2111101775 @default.
- W2136261952 cites W2117154949 @default.
- W2136261952 cites W2130556178 @default.
- W2136261952 cites W2144935315 @default.
- W2136261952 cites W2157364932 @default.
- W2136261952 cites W3142108954 @default.
- W2136261952 doi "https://doi.org/10.7551/mitpress/7503.003.0178" @default.
- W2136261952 hasPublicationYear "2007" @default.
- W2136261952 type Work @default.
- W2136261952 sameAs 2136261952 @default.
- W2136261952 citedByCount "104" @default.
- W2136261952 countsByYear W21362619522012 @default.
- W2136261952 countsByYear W21362619522013 @default.
- W2136261952 countsByYear W21362619522014 @default.
- W2136261952 countsByYear W21362619522015 @default.
- W2136261952 countsByYear W21362619522016 @default.
- W2136261952 countsByYear W21362619522017 @default.
- W2136261952 countsByYear W21362619522018 @default.
- W2136261952 countsByYear W21362619522019 @default.
- W2136261952 countsByYear W21362619522020 @default.
- W2136261952 countsByYear W21362619522021 @default.
- W2136261952 countsByYear W21362619522022 @default.
- W2136261952 crossrefType "book-chapter" @default.
- W2136261952 hasAuthorship W2136261952A5062270059 @default.
- W2136261952 hasAuthorship W2136261952A5082736347 @default.
- W2136261952 hasBestOaLocation W21362619522 @default.
- W2136261952 hasConcept C119857082 @default.
- W2136261952 hasConcept C121332964 @default.
- W2136261952 hasConcept C127313418 @default.
- W2136261952 hasConcept C168167062 @default.
- W2136261952 hasConcept C41008148 @default.
- W2136261952 hasConcept C774472 @default.
- W2136261952 hasConcept C97355855 @default.
- W2136261952 hasConceptScore W2136261952C119857082 @default.
- W2136261952 hasConceptScore W2136261952C121332964 @default.
- W2136261952 hasConceptScore W2136261952C127313418 @default.
- W2136261952 hasConceptScore W2136261952C168167062 @default.
- W2136261952 hasConceptScore W2136261952C41008148 @default.
- W2136261952 hasConceptScore W2136261952C774472 @default.
- W2136261952 hasConceptScore W2136261952C97355855 @default.
- W2136261952 hasLocation W21362619521 @default.
- W2136261952 hasLocation W21362619522 @default.
- W2136261952 hasOpenAccess W2136261952 @default.
- W2136261952 hasPrimaryLocation W21362619521 @default.
- W2136261952 hasRelatedWork W1508631387 @default.
- W2136261952 hasRelatedWork W2086120259 @default.
- W2136261952 hasRelatedWork W2245170124 @default.
- W2136261952 hasRelatedWork W2324615561 @default.
- W2136261952 hasRelatedWork W2370917603 @default.
- W2136261952 hasRelatedWork W2390279801 @default.
- W2136261952 hasRelatedWork W2748952813 @default.
- W2136261952 hasRelatedWork W2899084033 @default.
- W2136261952 hasRelatedWork W2952760143 @default.
- W2136261952 hasRelatedWork W3125011624 @default.
- W2136261952 isParatext "false" @default.
- W2136261952 isRetracted "false" @default.
- W2136261952 magId "2136261952" @default.
- W2136261952 workType "book-chapter" @default.