Matches in SemOpenAlex for { <https://semopenalex.org/work/W2136316997> ?p ?o ?g. }
- W2136316997 endingPage "1048" @default.
- W2136316997 startingPage "1037" @default.
- W2136316997 abstract "Unlike in many communication channels, the read signals in thin-film magnetic recording channels are corrupted by non-Gaussian, data-dependent noise and nonlinear distortions. In this work we use feedforward neural networks-a multilayer perceptron and its simplified variations-to equalize these signals. We demonstrate that they improve the performance of data recovery schemes in comparison with conventional equalizers. The variations of the MLP equalizer are suitable for the low complexity VLSI implementation required in data storage systems. We also present a novel training criterion designed to reduce the probability of error for the recovered digital data. The results were obtained both from experimental data and from a software recording channel simulator using thin-film disk and magnetoresistive head models." @default.
- W2136316997 created "2016-06-24" @default.
- W2136316997 creator A5046069388 @default.
- W2136316997 creator A5050809734 @default.
- W2136316997 date "1997-09-01" @default.
- W2136316997 modified "2023-09-27" @default.
- W2136316997 title "Data storage channel equalization using neural networks" @default.
- W2136316997 cites W1833405839 @default.
- W2136316997 cites W1965027528 @default.
- W2136316997 cites W1992348535 @default.
- W2136316997 cites W2002895443 @default.
- W2136316997 cites W2007244060 @default.
- W2136316997 cites W2009482696 @default.
- W2136316997 cites W2013041223 @default.
- W2136316997 cites W2016349481 @default.
- W2136316997 cites W2018067739 @default.
- W2136316997 cites W2022029988 @default.
- W2136316997 cites W2025128646 @default.
- W2136316997 cites W2031454613 @default.
- W2136316997 cites W2038950332 @default.
- W2136316997 cites W2042922733 @default.
- W2136316997 cites W2044327555 @default.
- W2136316997 cites W2050115272 @default.
- W2136316997 cites W2051138375 @default.
- W2136316997 cites W2077565777 @default.
- W2136316997 cites W2078376347 @default.
- W2136316997 cites W2087445537 @default.
- W2136316997 cites W2087907098 @default.
- W2136316997 cites W2097803538 @default.
- W2136316997 cites W2099631318 @default.
- W2136316997 cites W2103496339 @default.
- W2136316997 cites W2104172767 @default.
- W2136316997 cites W2104893535 @default.
- W2136316997 cites W2109690523 @default.
- W2136316997 cites W2114021911 @default.
- W2136316997 cites W2119222344 @default.
- W2136316997 cites W2122007740 @default.
- W2136316997 cites W2123391152 @default.
- W2136316997 cites W2124719704 @default.
- W2136316997 cites W2124819580 @default.
- W2136316997 cites W2130434395 @default.
- W2136316997 cites W2131086249 @default.
- W2136316997 cites W2133194789 @default.
- W2136316997 cites W2152754472 @default.
- W2136316997 cites W2155970439 @default.
- W2136316997 cites W2160693596 @default.
- W2136316997 cites W2160705903 @default.
- W2136316997 cites W2161720266 @default.
- W2136316997 cites W2163128872 @default.
- W2136316997 cites W2163862203 @default.
- W2136316997 cites W2170642450 @default.
- W2136316997 cites W2171474561 @default.
- W2136316997 cites W4233107900 @default.
- W2136316997 cites W2146859299 @default.
- W2136316997 doi "https://doi.org/10.1109/72.623206" @default.
- W2136316997 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18255707" @default.
- W2136316997 hasPublicationYear "1997" @default.
- W2136316997 type Work @default.
- W2136316997 sameAs 2136316997 @default.
- W2136316997 citedByCount "35" @default.
- W2136316997 countsByYear W21363169972016 @default.
- W2136316997 countsByYear W21363169972019 @default.
- W2136316997 countsByYear W21363169972020 @default.
- W2136316997 countsByYear W21363169972021 @default.
- W2136316997 countsByYear W21363169972023 @default.
- W2136316997 crossrefType "journal-article" @default.
- W2136316997 hasAuthorship W2136316997A5046069388 @default.
- W2136316997 hasAuthorship W2136316997A5050809734 @default.
- W2136316997 hasConcept C111919701 @default.
- W2136316997 hasConcept C115961682 @default.
- W2136316997 hasConcept C127162648 @default.
- W2136316997 hasConcept C127413603 @default.
- W2136316997 hasConcept C133731056 @default.
- W2136316997 hasConcept C154945302 @default.
- W2136316997 hasConcept C179717631 @default.
- W2136316997 hasConcept C194739806 @default.
- W2136316997 hasConcept C24326235 @default.
- W2136316997 hasConcept C2778511666 @default.
- W2136316997 hasConcept C2780415423 @default.
- W2136316997 hasConcept C38858127 @default.
- W2136316997 hasConcept C41008148 @default.
- W2136316997 hasConcept C50644808 @default.
- W2136316997 hasConcept C76155785 @default.
- W2136316997 hasConcept C9390403 @default.
- W2136316997 hasConcept C99498987 @default.
- W2136316997 hasConceptScore W2136316997C111919701 @default.
- W2136316997 hasConceptScore W2136316997C115961682 @default.
- W2136316997 hasConceptScore W2136316997C127162648 @default.
- W2136316997 hasConceptScore W2136316997C127413603 @default.
- W2136316997 hasConceptScore W2136316997C133731056 @default.
- W2136316997 hasConceptScore W2136316997C154945302 @default.
- W2136316997 hasConceptScore W2136316997C179717631 @default.
- W2136316997 hasConceptScore W2136316997C194739806 @default.
- W2136316997 hasConceptScore W2136316997C24326235 @default.
- W2136316997 hasConceptScore W2136316997C2778511666 @default.
- W2136316997 hasConceptScore W2136316997C2780415423 @default.
- W2136316997 hasConceptScore W2136316997C38858127 @default.
- W2136316997 hasConceptScore W2136316997C41008148 @default.