Matches in SemOpenAlex for { <https://semopenalex.org/work/W2136427590> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2136427590 abstract "We propose a new annealing method for the hyperparameters of several recent learning vector quantization algorithms. We first analyze the relationship between values assigned to the hyperparameters, the on-line learning process, and the structure of the resulting classifier. Motivated by the results we then suggest an annealing method, where each hyperparameter is initially set to a large value and is then slowly decreased during learning. We apply the annealing method to the LVQ 2.1, SLVQ-LR, and RSLVQ methods, and we compare the generalization performance achieved with the new annealing method and with a standard hyperparameter selection using 10-fold cross validation. Benchmark results are provided for the datasets letter and pendigits from the UCI machine learning repository. The new selection method provides equally good or - for some data sets - even superior results when compared to standard selection methods. More importantly, however, the number of learning trials for different values of the hyperparameters is drastically reduced. The results are insensitive to the form and parameters of the annealing schedule." @default.
- W2136427590 created "2016-06-24" @default.
- W2136427590 creator A5073910479 @default.
- W2136427590 creator A5084160111 @default.
- W2136427590 date "2006-01-01" @default.
- W2136427590 modified "2023-10-14" @default.
- W2136427590 title "Dynamic Hyperparameter Scaling Method for LVQ Algorithms" @default.
- W2136427590 cites W1530582330 @default.
- W2136427590 cites W1968328642 @default.
- W2136427590 cites W1990863955 @default.
- W2136427590 cites W1994616650 @default.
- W2136427590 cites W2012672587 @default.
- W2136427590 cites W2022814279 @default.
- W2136427590 cites W2052702017 @default.
- W2136427590 cites W2064429120 @default.
- W2136427590 cites W2109993655 @default.
- W2136427590 cites W2123749980 @default.
- W2136427590 cites W2124039671 @default.
- W2136427590 cites W2132211083 @default.
- W2136427590 cites W2138550913 @default.
- W2136427590 cites W2142248489 @default.
- W2136427590 cites W2146077544 @default.
- W2136427590 cites W2166107799 @default.
- W2136427590 cites W2185221445 @default.
- W2136427590 cites W2799061466 @default.
- W2136427590 doi "https://doi.org/10.1109/ijcnn.2006.247304" @default.
- W2136427590 hasPublicationYear "2006" @default.
- W2136427590 type Work @default.
- W2136427590 sameAs 2136427590 @default.
- W2136427590 citedByCount "6" @default.
- W2136427590 countsByYear W21364275902015 @default.
- W2136427590 countsByYear W21364275902016 @default.
- W2136427590 countsByYear W21364275902019 @default.
- W2136427590 crossrefType "proceedings-article" @default.
- W2136427590 hasAuthorship W2136427590A5073910479 @default.
- W2136427590 hasAuthorship W2136427590A5084160111 @default.
- W2136427590 hasConcept C11413529 @default.
- W2136427590 hasConcept C119857082 @default.
- W2136427590 hasConcept C126980161 @default.
- W2136427590 hasConcept C154945302 @default.
- W2136427590 hasConcept C199833920 @default.
- W2136427590 hasConcept C40567965 @default.
- W2136427590 hasConcept C41008148 @default.
- W2136427590 hasConcept C8642999 @default.
- W2136427590 hasConcept C95623464 @default.
- W2136427590 hasConceptScore W2136427590C11413529 @default.
- W2136427590 hasConceptScore W2136427590C119857082 @default.
- W2136427590 hasConceptScore W2136427590C126980161 @default.
- W2136427590 hasConceptScore W2136427590C154945302 @default.
- W2136427590 hasConceptScore W2136427590C199833920 @default.
- W2136427590 hasConceptScore W2136427590C40567965 @default.
- W2136427590 hasConceptScore W2136427590C41008148 @default.
- W2136427590 hasConceptScore W2136427590C8642999 @default.
- W2136427590 hasConceptScore W2136427590C95623464 @default.
- W2136427590 hasLocation W21364275901 @default.
- W2136427590 hasOpenAccess W2136427590 @default.
- W2136427590 hasPrimaryLocation W21364275901 @default.
- W2136427590 hasRelatedWork W3199608561 @default.
- W2136427590 hasRelatedWork W3211294765 @default.
- W2136427590 hasRelatedWork W4210794429 @default.
- W2136427590 hasRelatedWork W4223456145 @default.
- W2136427590 hasRelatedWork W4225307033 @default.
- W2136427590 hasRelatedWork W4280535922 @default.
- W2136427590 hasRelatedWork W4280644903 @default.
- W2136427590 hasRelatedWork W4283697347 @default.
- W2136427590 hasRelatedWork W4295309597 @default.
- W2136427590 hasRelatedWork W4295681619 @default.
- W2136427590 isParatext "false" @default.
- W2136427590 isRetracted "false" @default.
- W2136427590 magId "2136427590" @default.
- W2136427590 workType "article" @default.