Matches in SemOpenAlex for { <https://semopenalex.org/work/W2136886148> ?p ?o ?g. }
- W2136886148 endingPage "515" @default.
- W2136886148 startingPage "507" @default.
- W2136886148 abstract "A fundamental design concept for an array of sensors used in machine olfaction devices, electronic noses (e-noses), is that each sensor should maximize the overall sensitivity and provides different selectivity profiles over the range of target odor application. Ideally, each sensor should produce a different response to a given odor so that a unique odor pattern is created. Since this is rarely the case, sensor selection or reduction is needed when classification performance, cost, and technology limitations are issues of concern. The first step in the selection/reduction process is to generate features from each sensor's output waveform. In practice, some of the features obtained from an array of sensors are redundant and irrelevant due to cross-sensitivity and odor characteristics. As a result, inappropriate features or a poor configuration of features can lead to a deterioration of classification performance, or a more complex classification algorithm may be required. Hence, sensor selection for e-nose systems is of great important. In this study, a novel computationally efficient method is introduced by selecting the first few critical sensors based on a maximum margin criterion among different odor classes. Then, a stochastic search algorithm, a genetic algorithm (GA), uses those features as an initial step to optimize our sensor selection problem. The advantages of the proposed method are not only to avoid any initial misstep starting the search, but also to reduce the searching space for the optimal sensor array. From the experimental results on coffee and soda data sets, the number of selected sensors is significantly reduced (up to 90%) and classification performance is near 100%." @default.
- W2136886148 created "2016-06-24" @default.
- W2136886148 creator A5025914067 @default.
- W2136886148 creator A5060504511 @default.
- W2136886148 creator A5076014723 @default.
- W2136886148 date "2010-03-04" @default.
- W2136886148 modified "2023-10-10" @default.
- W2136886148 title "Intelligent method for sensor subset selection for machine olfaction" @default.
- W2136886148 cites W1523989055 @default.
- W2136886148 cites W1560724230 @default.
- W2136886148 cites W1608549042 @default.
- W2136886148 cites W1619226191 @default.
- W2136886148 cites W1984692084 @default.
- W2136886148 cites W1985669629 @default.
- W2136886148 cites W1990161547 @default.
- W2136886148 cites W1996898660 @default.
- W2136886148 cites W2017337590 @default.
- W2136886148 cites W2050125642 @default.
- W2136886148 cites W2050142109 @default.
- W2136886148 cites W2051381803 @default.
- W2136886148 cites W2091971808 @default.
- W2136886148 cites W2093404847 @default.
- W2136886148 cites W2109363337 @default.
- W2136886148 cites W2113080728 @default.
- W2136886148 cites W2119479037 @default.
- W2136886148 cites W2119821739 @default.
- W2136886148 cites W2127520944 @default.
- W2136886148 cites W2132549764 @default.
- W2136886148 cites W2139212933 @default.
- W2136886148 cites W2145758355 @default.
- W2136886148 cites W2148603752 @default.
- W2136886148 cites W2154060628 @default.
- W2136886148 cites W2156909104 @default.
- W2136886148 cites W2164096571 @default.
- W2136886148 cites W2172000360 @default.
- W2136886148 cites W2282078507 @default.
- W2136886148 cites W2527889483 @default.
- W2136886148 cites W2797502950 @default.
- W2136886148 cites W3012317737 @default.
- W2136886148 cites W3023540311 @default.
- W2136886148 cites W370143576 @default.
- W2136886148 cites W8815205 @default.
- W2136886148 cites W62188234 @default.
- W2136886148 doi "https://doi.org/10.1016/j.snb.2009.12.063" @default.
- W2136886148 hasPublicationYear "2010" @default.
- W2136886148 type Work @default.
- W2136886148 sameAs 2136886148 @default.
- W2136886148 citedByCount "32" @default.
- W2136886148 countsByYear W21368861482012 @default.
- W2136886148 countsByYear W21368861482013 @default.
- W2136886148 countsByYear W21368861482014 @default.
- W2136886148 countsByYear W21368861482015 @default.
- W2136886148 countsByYear W21368861482016 @default.
- W2136886148 countsByYear W21368861482017 @default.
- W2136886148 countsByYear W21368861482018 @default.
- W2136886148 countsByYear W21368861482020 @default.
- W2136886148 countsByYear W21368861482021 @default.
- W2136886148 countsByYear W21368861482023 @default.
- W2136886148 crossrefType "journal-article" @default.
- W2136886148 hasAuthorship W2136886148A5025914067 @default.
- W2136886148 hasAuthorship W2136886148A5060504511 @default.
- W2136886148 hasAuthorship W2136886148A5076014723 @default.
- W2136886148 hasConcept C111335779 @default.
- W2136886148 hasConcept C111919701 @default.
- W2136886148 hasConcept C119857082 @default.
- W2136886148 hasConcept C124101348 @default.
- W2136886148 hasConcept C127413603 @default.
- W2136886148 hasConcept C153180895 @default.
- W2136886148 hasConcept C154945302 @default.
- W2136886148 hasConcept C169760540 @default.
- W2136886148 hasConcept C197424946 @default.
- W2136886148 hasConcept C21200559 @default.
- W2136886148 hasConcept C23895516 @default.
- W2136886148 hasConcept C24326235 @default.
- W2136886148 hasConcept C2524010 @default.
- W2136886148 hasConcept C2778916471 @default.
- W2136886148 hasConcept C33923547 @default.
- W2136886148 hasConcept C41008148 @default.
- W2136886148 hasConcept C554190296 @default.
- W2136886148 hasConcept C66251956 @default.
- W2136886148 hasConcept C76155785 @default.
- W2136886148 hasConcept C774472 @default.
- W2136886148 hasConcept C81917197 @default.
- W2136886148 hasConcept C86803240 @default.
- W2136886148 hasConcept C8880873 @default.
- W2136886148 hasConcept C98045186 @default.
- W2136886148 hasConceptScore W2136886148C111335779 @default.
- W2136886148 hasConceptScore W2136886148C111919701 @default.
- W2136886148 hasConceptScore W2136886148C119857082 @default.
- W2136886148 hasConceptScore W2136886148C124101348 @default.
- W2136886148 hasConceptScore W2136886148C127413603 @default.
- W2136886148 hasConceptScore W2136886148C153180895 @default.
- W2136886148 hasConceptScore W2136886148C154945302 @default.
- W2136886148 hasConceptScore W2136886148C169760540 @default.
- W2136886148 hasConceptScore W2136886148C197424946 @default.
- W2136886148 hasConceptScore W2136886148C21200559 @default.
- W2136886148 hasConceptScore W2136886148C23895516 @default.
- W2136886148 hasConceptScore W2136886148C24326235 @default.