Matches in SemOpenAlex for { <https://semopenalex.org/work/W2136906> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2136906 abstract "These are some minor notes and observations related to a paper by Cholak, Jockusch, and Slaman [3]. In particular, if T1 and T2 are theories in the language of second-order arithmetic and T2 is Π 1 1 conservative over T1, it is not necessarily the case that every countable model of T1 is an ω-submodel of a countable model of T2; this answers a question posed in [3]. On the other hand, for n ≥ 1, every countable ω-model of IΣn (resp. BΣn+1 ) is an ω-submodel of a countable model of WKL0 + IΣn (resp. WKL0 + BΣn+1 ). 1 Π1-conservativity and ω-submodels If T is a theory in the language of second-order arithmetic, a Henkin modelM of T can be viewed as a structure 〈M,SM , . . .〉, where first-order variables are taken to range overM , and second-order variables are taken to range over some subset SM of the power set of M . If M = ω and M has the standard interpretations of +, ×, etc., then M is said to be an ω-model. If M1 = 〈M1, SM1 , . . .〉 and M2 = 〈M2, SM2 , . . .〉 are models, then M1 is said to be an ω-submodel of M2 if M1 =M2 and SM1 ⊆ SM2 (note that M1 and M2 need not be ω!). The theories RCA0 , WKL0 , ACA0 are fragments of second-order arithmetic in which induction is restricted to Σ1 formulae with parameters, and in which comprehension is replaced by recursive comprehension, a weak version of Konig’s lemma, or arithmetic comprehension, respectively. From here on the general reference for subystems of second-order arithmetic is Simpson [10]. It is not hard to see that if T1 and T2 are theories in the language of secondorder arithmetic and every countable ω-model of T1 is an ω-submodel of a countable model of T2, then T2 is Π1-conservative over T1: if ψ is Π1 and T1 does not prove ψ, let M1 be a countable model of T1 + ¬ψ; find a model M2 of T2 such that M1 is an ω-submodel of M2; then M2 is a model of T2 + ¬ψ. ∗Carnegie Mellon Technical Report CMU-PHIL-125. Section 3 modified slightly, January 8, 2002." @default.
- W2136906 created "2016-06-24" @default.
- W2136906 creator A5003483051 @default.
- W2136906 date "2001-01-01" @default.
- W2136906 modified "2023-09-27" @default.
- W2136906 title "Notes on Pi^1_1 Conservativity, Omega-Submodels, and the Collection Schema" @default.
- W2136906 cites W13300039 @default.
- W2136906 cites W1556453281 @default.
- W2136906 cites W1572451808 @default.
- W2136906 cites W2038447110 @default.
- W2136906 cites W2102450922 @default.
- W2136906 cites W2139227798 @default.
- W2136906 cites W2148962283 @default.
- W2136906 hasPublicationYear "2001" @default.
- W2136906 type Work @default.
- W2136906 sameAs 2136906 @default.
- W2136906 citedByCount "0" @default.
- W2136906 crossrefType "journal-article" @default.
- W2136906 hasAuthorship W2136906A5003483051 @default.
- W2136906 hasConcept C10138342 @default.
- W2136906 hasConcept C110729354 @default.
- W2136906 hasConcept C114614502 @default.
- W2136906 hasConcept C118615104 @default.
- W2136906 hasConcept C119857082 @default.
- W2136906 hasConcept C138885662 @default.
- W2136906 hasConcept C162324750 @default.
- W2136906 hasConcept C182306322 @default.
- W2136906 hasConcept C18903297 @default.
- W2136906 hasConcept C2777759810 @default.
- W2136906 hasConcept C2779557605 @default.
- W2136906 hasConcept C33923547 @default.
- W2136906 hasConcept C41008148 @default.
- W2136906 hasConcept C41895202 @default.
- W2136906 hasConcept C46757340 @default.
- W2136906 hasConcept C52146309 @default.
- W2136906 hasConcept C65148605 @default.
- W2136906 hasConcept C86803240 @default.
- W2136906 hasConcept C94375191 @default.
- W2136906 hasConcept C97489613 @default.
- W2136906 hasConceptScore W2136906C10138342 @default.
- W2136906 hasConceptScore W2136906C110729354 @default.
- W2136906 hasConceptScore W2136906C114614502 @default.
- W2136906 hasConceptScore W2136906C118615104 @default.
- W2136906 hasConceptScore W2136906C119857082 @default.
- W2136906 hasConceptScore W2136906C138885662 @default.
- W2136906 hasConceptScore W2136906C162324750 @default.
- W2136906 hasConceptScore W2136906C182306322 @default.
- W2136906 hasConceptScore W2136906C18903297 @default.
- W2136906 hasConceptScore W2136906C2777759810 @default.
- W2136906 hasConceptScore W2136906C2779557605 @default.
- W2136906 hasConceptScore W2136906C33923547 @default.
- W2136906 hasConceptScore W2136906C41008148 @default.
- W2136906 hasConceptScore W2136906C41895202 @default.
- W2136906 hasConceptScore W2136906C46757340 @default.
- W2136906 hasConceptScore W2136906C52146309 @default.
- W2136906 hasConceptScore W2136906C65148605 @default.
- W2136906 hasConceptScore W2136906C86803240 @default.
- W2136906 hasConceptScore W2136906C94375191 @default.
- W2136906 hasConceptScore W2136906C97489613 @default.
- W2136906 hasLocation W21369061 @default.
- W2136906 hasOpenAccess W2136906 @default.
- W2136906 hasPrimaryLocation W21369061 @default.
- W2136906 hasRelatedWork W1965116174 @default.
- W2136906 hasRelatedWork W1970452917 @default.
- W2136906 hasRelatedWork W1989586176 @default.
- W2136906 hasRelatedWork W1994483064 @default.
- W2136906 hasRelatedWork W2020563202 @default.
- W2136906 hasRelatedWork W2021735825 @default.
- W2136906 hasRelatedWork W2033664708 @default.
- W2136906 hasRelatedWork W2040462567 @default.
- W2136906 hasRelatedWork W2041820615 @default.
- W2136906 hasRelatedWork W2042415135 @default.
- W2136906 hasRelatedWork W2051458286 @default.
- W2136906 hasRelatedWork W2051561433 @default.
- W2136906 hasRelatedWork W2129802687 @default.
- W2136906 hasRelatedWork W2167651941 @default.
- W2136906 hasRelatedWork W2167687907 @default.
- W2136906 hasRelatedWork W2764897664 @default.
- W2136906 hasRelatedWork W2947626902 @default.
- W2136906 hasRelatedWork W3101633617 @default.
- W2136906 hasRelatedWork W3103392788 @default.
- W2136906 hasRelatedWork W2514948457 @default.
- W2136906 isParatext "false" @default.
- W2136906 isRetracted "false" @default.
- W2136906 magId "2136906" @default.
- W2136906 workType "article" @default.