Matches in SemOpenAlex for { <https://semopenalex.org/work/W2137055149> ?p ?o ?g. }
- W2137055149 endingPage "917" @default.
- W2137055149 startingPage "909" @default.
- W2137055149 abstract "Multiple Kernel Learning (MKL) aims to learn kernel machines for solving a real machine learning problem (e.g. classification) by exploring the combinations of multiple kernels. The traditional MKL approach is in general “shallow” in the sense that the target kernel is simply a linear (or convex) combination of some base kernels. In this paper, we investigate a framework of Multi-Layer Multiple Kernel Learning (MLMKL) that aims to learn “deep” kernel machines by exploring the combinations of multiple kernels in a multi-layer structure, which goes beyond the conventional MKL approach. Through a multiple layer mapping, the proposed MLMKL framework offers higher flexibility than the regular MKL for finding the optimal kernel for applications. As the first attempt to this new MKL framework, we present a Two-Layer Multiple Kernel Learning (2LMKL) method together with two efficient algorithms for classification tasks. We analyze their generalization performances and have conducted an extensive set of experiments over 16 benchmark datasets, in which encouraging results showed that our method performed better than the conventional MKL methods." @default.
- W2137055149 created "2016-06-24" @default.
- W2137055149 creator A5021751767 @default.
- W2137055149 creator A5060548099 @default.
- W2137055149 creator A5074834854 @default.
- W2137055149 date "2011-06-14" @default.
- W2137055149 modified "2023-09-23" @default.
- W2137055149 title "Two-layer multiple kernel learning" @default.
- W2137055149 cites W1510073064 @default.
- W2137055149 cites W1540155273 @default.
- W2137055149 cites W1542886316 @default.
- W2137055149 cites W1559159361 @default.
- W2137055149 cites W1563088657 @default.
- W2137055149 cites W1585011729 @default.
- W2137055149 cites W1646506067 @default.
- W2137055149 cites W1994197834 @default.
- W2137055149 cites W1999693420 @default.
- W2137055149 cites W2031823405 @default.
- W2137055149 cites W2072128103 @default.
- W2137055149 cites W2100495367 @default.
- W2137055149 cites W2104472920 @default.
- W2137055149 cites W2105732805 @default.
- W2137055149 cites W2114229504 @default.
- W2137055149 cites W2117866949 @default.
- W2137055149 cites W2119821739 @default.
- W2137055149 cites W2127069950 @default.
- W2137055149 cites W2130073327 @default.
- W2137055149 cites W2133396101 @default.
- W2137055149 cites W2136922672 @default.
- W2137055149 cites W2140069289 @default.
- W2137055149 cites W2145295623 @default.
- W2137055149 cites W2148603752 @default.
- W2137055149 cites W2150772522 @default.
- W2137055149 cites W2154462399 @default.
- W2137055149 cites W2154630456 @default.
- W2137055149 cites W2164535072 @default.
- W2137055149 cites W2167608136 @default.
- W2137055149 cites W2527802255 @default.
- W2137055149 hasPublicationYear "2011" @default.
- W2137055149 type Work @default.
- W2137055149 sameAs 2137055149 @default.
- W2137055149 citedByCount "42" @default.
- W2137055149 countsByYear W21370551492012 @default.
- W2137055149 countsByYear W21370551492014 @default.
- W2137055149 countsByYear W21370551492015 @default.
- W2137055149 countsByYear W21370551492016 @default.
- W2137055149 countsByYear W21370551492017 @default.
- W2137055149 countsByYear W21370551492018 @default.
- W2137055149 countsByYear W21370551492019 @default.
- W2137055149 countsByYear W21370551492020 @default.
- W2137055149 countsByYear W21370551492021 @default.
- W2137055149 crossrefType "proceedings-article" @default.
- W2137055149 hasAuthorship W2137055149A5021751767 @default.
- W2137055149 hasAuthorship W2137055149A5060548099 @default.
- W2137055149 hasAuthorship W2137055149A5074834854 @default.
- W2137055149 hasConcept C114614502 @default.
- W2137055149 hasConcept C119857082 @default.
- W2137055149 hasConcept C122280245 @default.
- W2137055149 hasConcept C12267149 @default.
- W2137055149 hasConcept C13280743 @default.
- W2137055149 hasConcept C134306372 @default.
- W2137055149 hasConcept C134517425 @default.
- W2137055149 hasConcept C140417398 @default.
- W2137055149 hasConcept C154945302 @default.
- W2137055149 hasConcept C160446489 @default.
- W2137055149 hasConcept C177148314 @default.
- W2137055149 hasConcept C177264268 @default.
- W2137055149 hasConcept C178790620 @default.
- W2137055149 hasConcept C185592680 @default.
- W2137055149 hasConcept C185798385 @default.
- W2137055149 hasConcept C199360897 @default.
- W2137055149 hasConcept C205649164 @default.
- W2137055149 hasConcept C2776879701 @default.
- W2137055149 hasConcept C2779227376 @default.
- W2137055149 hasConcept C33923547 @default.
- W2137055149 hasConcept C41008148 @default.
- W2137055149 hasConcept C74193536 @default.
- W2137055149 hasConcept C75866337 @default.
- W2137055149 hasConceptScore W2137055149C114614502 @default.
- W2137055149 hasConceptScore W2137055149C119857082 @default.
- W2137055149 hasConceptScore W2137055149C122280245 @default.
- W2137055149 hasConceptScore W2137055149C12267149 @default.
- W2137055149 hasConceptScore W2137055149C13280743 @default.
- W2137055149 hasConceptScore W2137055149C134306372 @default.
- W2137055149 hasConceptScore W2137055149C134517425 @default.
- W2137055149 hasConceptScore W2137055149C140417398 @default.
- W2137055149 hasConceptScore W2137055149C154945302 @default.
- W2137055149 hasConceptScore W2137055149C160446489 @default.
- W2137055149 hasConceptScore W2137055149C177148314 @default.
- W2137055149 hasConceptScore W2137055149C177264268 @default.
- W2137055149 hasConceptScore W2137055149C178790620 @default.
- W2137055149 hasConceptScore W2137055149C185592680 @default.
- W2137055149 hasConceptScore W2137055149C185798385 @default.
- W2137055149 hasConceptScore W2137055149C199360897 @default.
- W2137055149 hasConceptScore W2137055149C205649164 @default.
- W2137055149 hasConceptScore W2137055149C2776879701 @default.
- W2137055149 hasConceptScore W2137055149C2779227376 @default.
- W2137055149 hasConceptScore W2137055149C33923547 @default.