Matches in SemOpenAlex for { <https://semopenalex.org/work/W2137144623> ?p ?o ?g. }
- W2137144623 abstract "The use of linear algebra routines is fundamental to many areas of computational science, yet their implementation in software still forms the main computational bottleneck in many widely used algorithms. In machine learning and computational statistics, for example, the use of Gaussian distributions is ubiquitous, and routines for calculating the Cholesky decomposition, matrix inverse and matrix determinant must often be called many thousands of times for common algorithms, such as Markov chain Monte Carlo. These linear algebra routines consume most of the total computational time of a wide range of statistical methods, and any improvements in this area will therefore greatly increase the overall efficiency of algorithms used in many scientific application areas. The importance of linear algebra algorithms is clear from the substantial effort that has been invested over the last 25 years in producing low-level software libraries such as LAPACK, which generally optimise these linear algebra routines by breaking up a large problem into smaller problems that may be computed independently. The performance of such libraries is however strongly dependent on the specific hardware available. LAPACK was originally developed for single core processors with a memory hierarchy, whereas modern day computers often consist of mixed architectures, with large numbers of parallel cores and graphics processing units (GPU) being used alongside traditional CPUs. The challenge lies in making optimal use of these different types of computing units, which generally have very different processor speeds and types of memory. In this thesis we develop novel low-level algorithms that may be generally employed in blocked linear algebra routines, which automatically optimise themselves to take full advantage of the variety of heterogeneous architectures that may be available. We present a comparison of our methods with MAGMA, the state of the art open source implementation of LAPACK designed specifically for hybrid architectures, and demonstrate up to 400% increase in speed that may be obtained using our novel algorithms, specifically when running commonly used Cholesky matrix decomposition, matrix inverse and matrix determinant routines." @default.
- W2137144623 created "2016-06-24" @default.
- W2137144623 creator A5067069022 @default.
- W2137144623 date "2013-07-28" @default.
- W2137144623 modified "2023-09-26" @default.
- W2137144623 title "Hybrid Algorithms for Efficient Cholesky Decomposition and Matrix Inverse using Multicore CPUs with GPU Accelerators" @default.
- W2137144623 cites W1495550651 @default.
- W2137144623 cites W1535359212 @default.
- W2137144623 cites W1558138778 @default.
- W2137144623 cites W1568272005 @default.
- W2137144623 cites W1571024744 @default.
- W2137144623 cites W1590146790 @default.
- W2137144623 cites W1606525066 @default.
- W2137144623 cites W1657213141 @default.
- W2137144623 cites W1658503071 @default.
- W2137144623 cites W1746819321 @default.
- W2137144623 cites W1797634622 @default.
- W2137144623 cites W1825216778 @default.
- W2137144623 cites W1947869163 @default.
- W2137144623 cites W1963898916 @default.
- W2137144623 cites W1964477602 @default.
- W2137144623 cites W1964479544 @default.
- W2137144623 cites W1965612527 @default.
- W2137144623 cites W1972339099 @default.
- W2137144623 cites W1976158744 @default.
- W2137144623 cites W1979566015 @default.
- W2137144623 cites W1981663184 @default.
- W2137144623 cites W1984222112 @default.
- W2137144623 cites W1985093013 @default.
- W2137144623 cites W1986624837 @default.
- W2137144623 cites W1988425770 @default.
- W2137144623 cites W1988684120 @default.
- W2137144623 cites W1988888548 @default.
- W2137144623 cites W1990262300 @default.
- W2137144623 cites W2001946794 @default.
- W2137144623 cites W2002257715 @default.
- W2137144623 cites W2014208555 @default.
- W2137144623 cites W2016279572 @default.
- W2137144623 cites W2018044188 @default.
- W2137144623 cites W2022020111 @default.
- W2137144623 cites W2027235634 @default.
- W2137144623 cites W2028499920 @default.
- W2137144623 cites W2028560506 @default.
- W2137144623 cites W2032309817 @default.
- W2137144623 cites W2037231736 @default.
- W2137144623 cites W2046116940 @default.
- W2137144623 cites W2047978125 @default.
- W2137144623 cites W2048971218 @default.
- W2137144623 cites W2049882758 @default.
- W2137144623 cites W2053987390 @default.
- W2137144623 cites W2056760934 @default.
- W2137144623 cites W2063186542 @default.
- W2137144623 cites W2079658918 @default.
- W2137144623 cites W2081612620 @default.
- W2137144623 cites W2081891968 @default.
- W2137144623 cites W2086611351 @default.
- W2137144623 cites W2091225596 @default.
- W2137144623 cites W2092047029 @default.
- W2137144623 cites W2095595785 @default.
- W2137144623 cites W2095622082 @default.
- W2137144623 cites W2102862543 @default.
- W2137144623 cites W2104544580 @default.
- W2137144623 cites W2108801243 @default.
- W2137144623 cites W2111820660 @default.
- W2137144623 cites W2112966019 @default.
- W2137144623 cites W2118688057 @default.
- W2137144623 cites W2122878758 @default.
- W2137144623 cites W2135194391 @default.
- W2137144623 cites W2135653967 @default.
- W2137144623 cites W2135736783 @default.
- W2137144623 cites W2136796925 @default.
- W2137144623 cites W2138309709 @default.
- W2137144623 cites W2141310108 @default.
- W2137144623 cites W2144643978 @default.
- W2137144623 cites W2155503253 @default.
- W2137144623 cites W2156413870 @default.
- W2137144623 cites W2159054268 @default.
- W2137144623 cites W2165964351 @default.
- W2137144623 cites W2169004268 @default.
- W2137144623 cites W2169706611 @default.
- W2137144623 cites W2175102988 @default.
- W2137144623 cites W2246829788 @default.
- W2137144623 cites W2255551763 @default.
- W2137144623 cites W2295862081 @default.
- W2137144623 cites W2481777865 @default.
- W2137144623 cites W2485120480 @default.
- W2137144623 cites W2487331830 @default.
- W2137144623 cites W2506192609 @default.
- W2137144623 cites W2550572625 @default.
- W2137144623 cites W2615953416 @default.
- W2137144623 cites W3010081973 @default.
- W2137144623 cites W3123857276 @default.
- W2137144623 cites W3203992401 @default.
- W2137144623 cites W14377099 @default.
- W2137144623 cites W2920848482 @default.
- W2137144623 hasPublicationYear "2013" @default.
- W2137144623 type Work @default.
- W2137144623 sameAs 2137144623 @default.
- W2137144623 citedByCount "2" @default.
- W2137144623 countsByYear W21371446232017 @default.