Matches in SemOpenAlex for { <https://semopenalex.org/work/W2137147119> ?p ?o ?g. }
- W2137147119 abstract "Summary The adoption of simulation tools to predict surgical outcomes is increasingly leading to questions about the variability of these predictions in the presence of uncertainty associated with the input clinical data. In the present study, we propose a methodology for full propagation of uncertainty from clinical data to model results that, unlike deterministic simulation, enables estimation of the confidence associated with model predictions. We illustrate this problem in a virtual stage II single ventricle palliation surgery example. First, probability density functions (PDFs) of right pulmonary artery (PA) flow split ratio and average pulmonary pressure are determined from clinical measurements, complemented by literature data. Starting from a zero‐dimensional semi‐empirical approximation, Bayesian parameter estimation is used to find the distributions of boundary conditions that produce the expected PA flow split and average pressure PDFs as pre‐operative model results. To reduce computational cost, this inverse problem is solved using a Kriging approximant. Second, uncertainties in the boundary conditions are propagated to simulation predictions. Sparse grid stochastic collocation is employed to statistically characterize model predictions of post‐operative hemodynamics in models with and without PA stenosis. The results quantify the statistical variability in virtual surgery predictions, allowing for placement of confidence intervals on simulation outputs. Copyright © 2015 John Wiley & Sons, Ltd." @default.
- W2137147119 created "2016-06-24" @default.
- W2137147119 creator A5020380376 @default.
- W2137147119 creator A5036046412 @default.
- W2137147119 creator A5037280320 @default.
- W2137147119 creator A5039995990 @default.
- W2137147119 creator A5061313165 @default.
- W2137147119 creator A5073848058 @default.
- W2137147119 creator A5074812549 @default.
- W2137147119 creator A5087790536 @default.
- W2137147119 date "2015-09-02" @default.
- W2137147119 modified "2023-10-16" @default.
- W2137147119 title "Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation" @default.
- W2137147119 cites W1582614941 @default.
- W2137147119 cites W1820412285 @default.
- W2137147119 cites W1965965942 @default.
- W2137147119 cites W1967168536 @default.
- W2137147119 cites W1978744409 @default.
- W2137147119 cites W1981737207 @default.
- W2137147119 cites W1982421072 @default.
- W2137147119 cites W1988326784 @default.
- W2137147119 cites W1991323175 @default.
- W2137147119 cites W1992005524 @default.
- W2137147119 cites W1992736458 @default.
- W2137147119 cites W2002747125 @default.
- W2137147119 cites W2011679634 @default.
- W2137147119 cites W2018159038 @default.
- W2137147119 cites W2020999234 @default.
- W2137147119 cites W2031563096 @default.
- W2137147119 cites W2034116445 @default.
- W2137147119 cites W2034444616 @default.
- W2137147119 cites W2034878612 @default.
- W2137147119 cites W2035795603 @default.
- W2137147119 cites W2049554061 @default.
- W2137147119 cites W2051203581 @default.
- W2137147119 cites W2054307811 @default.
- W2137147119 cites W2056352173 @default.
- W2137147119 cites W2056558085 @default.
- W2137147119 cites W2056760934 @default.
- W2137147119 cites W2060528584 @default.
- W2137147119 cites W2066467792 @default.
- W2137147119 cites W2066506571 @default.
- W2137147119 cites W2068049522 @default.
- W2137147119 cites W2072402527 @default.
- W2137147119 cites W2074177179 @default.
- W2137147119 cites W2080540902 @default.
- W2137147119 cites W2082914312 @default.
- W2137147119 cites W2083845086 @default.
- W2137147119 cites W2083875149 @default.
- W2137147119 cites W2095618758 @default.
- W2137147119 cites W2096034943 @default.
- W2137147119 cites W2096969866 @default.
- W2137147119 cites W2109012275 @default.
- W2137147119 cites W2113105229 @default.
- W2137147119 cites W2113699928 @default.
- W2137147119 cites W2117179898 @default.
- W2137147119 cites W2120044015 @default.
- W2137147119 cites W2124819704 @default.
- W2137147119 cites W2126476406 @default.
- W2137147119 cites W2127096929 @default.
- W2137147119 cites W2128003443 @default.
- W2137147119 cites W2134797319 @default.
- W2137147119 cites W2136796925 @default.
- W2137147119 cites W2138309709 @default.
- W2137147119 cites W2149731199 @default.
- W2137147119 cites W2150062983 @default.
- W2137147119 cites W2150065891 @default.
- W2137147119 cites W2157946803 @default.
- W2137147119 cites W2165543134 @default.
- W2137147119 cites W2171050536 @default.
- W2137147119 cites W32980360 @default.
- W2137147119 cites W4243645092 @default.
- W2137147119 cites W55912154 @default.
- W2137147119 doi "https://doi.org/10.1002/cnm.2737" @default.
- W2137147119 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26217878" @default.
- W2137147119 hasPublicationYear "2015" @default.
- W2137147119 type Work @default.
- W2137147119 sameAs 2137147119 @default.
- W2137147119 citedByCount "54" @default.
- W2137147119 countsByYear W21371471192015 @default.
- W2137147119 countsByYear W21371471192016 @default.
- W2137147119 countsByYear W21371471192017 @default.
- W2137147119 countsByYear W21371471192018 @default.
- W2137147119 countsByYear W21371471192019 @default.
- W2137147119 countsByYear W21371471192020 @default.
- W2137147119 countsByYear W21371471192021 @default.
- W2137147119 countsByYear W21371471192022 @default.
- W2137147119 countsByYear W21371471192023 @default.
- W2137147119 crossrefType "journal-article" @default.
- W2137147119 hasAuthorship W2137147119A5020380376 @default.
- W2137147119 hasAuthorship W2137147119A5036046412 @default.
- W2137147119 hasAuthorship W2137147119A5037280320 @default.
- W2137147119 hasAuthorship W2137147119A5039995990 @default.
- W2137147119 hasAuthorship W2137147119A5061313165 @default.
- W2137147119 hasAuthorship W2137147119A5073848058 @default.
- W2137147119 hasAuthorship W2137147119A5074812549 @default.
- W2137147119 hasAuthorship W2137147119A5087790536 @default.
- W2137147119 hasBestOaLocation W21371471192 @default.
- W2137147119 hasConcept C105795698 @default.
- W2137147119 hasConcept C11413529 @default.