Matches in SemOpenAlex for { <https://semopenalex.org/work/W2137184475> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2137184475 endingPage "138" @default.
- W2137184475 startingPage "127" @default.
- W2137184475 abstract "Let be the set of recursive functions computable by machines using at most t(x) computation steps on argument x , for all but finitely many inputs x . We call t a name for the complexity class . Suppose we allow our machines to run longer, say h(x, t(x)) steps on argument x , where h is some fixed recursive function. One might expect that, for large enough h , permitting our machines to run longer by an amount h will always allow us to compute new functions, i.e., is a proper subset of . This turns out not to be the case: The “gap theorem” ([2], [3]) implies that for every recursive h there exists a recursive t such that . However, if we restrict our attention to names from a certain subclass of the recursive functions, then we can indeed uniformly increase the size of our -classes. Informally, we call a recursive function t “honest” if some machine computes t(x) in roughly t(x) steps for each argument x . (A precise definition is given in Definition 1 below.) Then according to the “compression theorem” [1], there exists a single recursive function h such that, for every honest t , is a proper subset of . Thus the phenomenon of the gap theorem is avoided by restricting attention to honest functions. It is a surprising consequence of the “honesty theorem” of McCreight and Meyer ([4], [5]) that there is no loss of generality in this restriction. Namely, for any recursive function t there is an honest recursive function t ′ such that ." @default.
- W2137184475 created "2016-06-24" @default.
- W2137184475 creator A5043105322 @default.
- W2137184475 creator A5054551127 @default.
- W2137184475 date "1974-03-01" @default.
- W2137184475 modified "2023-09-25" @default.
- W2137184475 title "Honest bounds for complexity classes of recursive functions " @default.
- W2137184475 cites W2012030760 @default.
- W2137184475 cites W2021141490 @default.
- W2137184475 cites W2043382625 @default.
- W2137184475 cites W2081635977 @default.
- W2137184475 cites W2089442854 @default.
- W2137184475 doi "https://doi.org/10.2307/2272353" @default.
- W2137184475 hasPublicationYear "1974" @default.
- W2137184475 type Work @default.
- W2137184475 sameAs 2137184475 @default.
- W2137184475 citedByCount "5" @default.
- W2137184475 crossrefType "journal-article" @default.
- W2137184475 hasAuthorship W2137184475A5043105322 @default.
- W2137184475 hasAuthorship W2137184475A5054551127 @default.
- W2137184475 hasConcept C114614502 @default.
- W2137184475 hasConcept C118615104 @default.
- W2137184475 hasConcept C14036430 @default.
- W2137184475 hasConcept C154945302 @default.
- W2137184475 hasConcept C15744967 @default.
- W2137184475 hasConcept C185592680 @default.
- W2137184475 hasConcept C194886279 @default.
- W2137184475 hasConcept C2777212361 @default.
- W2137184475 hasConcept C2780767217 @default.
- W2137184475 hasConcept C2982939207 @default.
- W2137184475 hasConcept C33923547 @default.
- W2137184475 hasConcept C3853638 @default.
- W2137184475 hasConcept C41008148 @default.
- W2137184475 hasConcept C45962547 @default.
- W2137184475 hasConcept C542102704 @default.
- W2137184475 hasConcept C54271186 @default.
- W2137184475 hasConcept C55493867 @default.
- W2137184475 hasConcept C68227491 @default.
- W2137184475 hasConcept C78458016 @default.
- W2137184475 hasConcept C85955891 @default.
- W2137184475 hasConcept C86803240 @default.
- W2137184475 hasConcept C98184364 @default.
- W2137184475 hasConcept C9986523 @default.
- W2137184475 hasConceptScore W2137184475C114614502 @default.
- W2137184475 hasConceptScore W2137184475C118615104 @default.
- W2137184475 hasConceptScore W2137184475C14036430 @default.
- W2137184475 hasConceptScore W2137184475C154945302 @default.
- W2137184475 hasConceptScore W2137184475C15744967 @default.
- W2137184475 hasConceptScore W2137184475C185592680 @default.
- W2137184475 hasConceptScore W2137184475C194886279 @default.
- W2137184475 hasConceptScore W2137184475C2777212361 @default.
- W2137184475 hasConceptScore W2137184475C2780767217 @default.
- W2137184475 hasConceptScore W2137184475C2982939207 @default.
- W2137184475 hasConceptScore W2137184475C33923547 @default.
- W2137184475 hasConceptScore W2137184475C3853638 @default.
- W2137184475 hasConceptScore W2137184475C41008148 @default.
- W2137184475 hasConceptScore W2137184475C45962547 @default.
- W2137184475 hasConceptScore W2137184475C542102704 @default.
- W2137184475 hasConceptScore W2137184475C54271186 @default.
- W2137184475 hasConceptScore W2137184475C55493867 @default.
- W2137184475 hasConceptScore W2137184475C68227491 @default.
- W2137184475 hasConceptScore W2137184475C78458016 @default.
- W2137184475 hasConceptScore W2137184475C85955891 @default.
- W2137184475 hasConceptScore W2137184475C86803240 @default.
- W2137184475 hasConceptScore W2137184475C98184364 @default.
- W2137184475 hasConceptScore W2137184475C9986523 @default.
- W2137184475 hasIssue "01" @default.
- W2137184475 hasLocation W21371844751 @default.
- W2137184475 hasOpenAccess W2137184475 @default.
- W2137184475 hasPrimaryLocation W21371844751 @default.
- W2137184475 hasRelatedWork W170399976 @default.
- W2137184475 hasRelatedWork W1823991804 @default.
- W2137184475 hasRelatedWork W2015666295 @default.
- W2137184475 hasRelatedWork W2133209493 @default.
- W2137184475 hasRelatedWork W2532450662 @default.
- W2137184475 hasRelatedWork W2914940747 @default.
- W2137184475 hasRelatedWork W3184399009 @default.
- W2137184475 hasRelatedWork W4289539471 @default.
- W2137184475 hasRelatedWork W50353898 @default.
- W2137184475 hasRelatedWork W6819771 @default.
- W2137184475 hasVolume "39" @default.
- W2137184475 isParatext "false" @default.
- W2137184475 isRetracted "false" @default.
- W2137184475 magId "2137184475" @default.
- W2137184475 workType "article" @default.