Matches in SemOpenAlex for { <https://semopenalex.org/work/W2137253321> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2137253321 endingPage "556" @default.
- W2137253321 startingPage "549" @default.
- W2137253321 abstract "When using continuous predictor variables in discrete-state Markov modeling, it is necessary to create categories of risk and assume homogeneous disease risk within categories, which may bias model outcomes. This analysis assessed the tradeoffs between model bias and complexity and/or data limitations when categorizing continuous risk factors in Markov models.The authors developed a generic Markov cohort model of disease, defining bias as the percentage change in life expectancy gain from a hypothetical intervention when using 2 to 15 risk factor categories as compared with modeling the risk factor as a continuous variable. They evaluated the magnitude and sign of bias as a function of disease incidence, disease-specific mortality, and relative difference in risk among categories.Bias was positive in the base case, indicating that categorization overestimated life expectancy gains. The bias approached zero as the number of risk factor categories increased and did not exceed 4% for any parameter combinations or numbers of categories considered. For any given disease-specific mortality and disease incidence, bias increased with relative risk of disease. For any given relative risk, the relationship between bias and parameters such as disease-specific mortality or disease incidence was not always monotonic.Under the assumption of a normally distributed risk factor and reasonable assumption regarding disease risk and moderate values for the relative risk of disease given risk factor category, categorizing continuously valued risk factors in Markov models is associated with less than 4% absolute bias when at least 2 categories are used." @default.
- W2137253321 created "2016-06-24" @default.
- W2137253321 creator A5068614908 @default.
- W2137253321 creator A5079168094 @default.
- W2137253321 creator A5085388820 @default.
- W2137253321 date "2009-07-13" @default.
- W2137253321 modified "2023-09-23" @default.
- W2137253321 title "Effects of Categorizing Continuous Variables in Decision-Analytic Models" @default.
- W2137253321 cites W1977050760 @default.
- W2137253321 cites W2011006722 @default.
- W2137253321 cites W2031968478 @default.
- W2137253321 cites W2034020340 @default.
- W2137253321 cites W2048448304 @default.
- W2137253321 cites W2069487228 @default.
- W2137253321 cites W2122636853 @default.
- W2137253321 cites W2123853270 @default.
- W2137253321 cites W2127004748 @default.
- W2137253321 cites W2129285512 @default.
- W2137253321 cites W2139187233 @default.
- W2137253321 cites W2159657430 @default.
- W2137253321 cites W4232061938 @default.
- W2137253321 doi "https://doi.org/10.1177/0272989x09340238" @default.
- W2137253321 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19596867" @default.
- W2137253321 hasPublicationYear "2009" @default.
- W2137253321 type Work @default.
- W2137253321 sameAs 2137253321 @default.
- W2137253321 citedByCount "11" @default.
- W2137253321 countsByYear W21372533212012 @default.
- W2137253321 countsByYear W21372533212013 @default.
- W2137253321 countsByYear W21372533212014 @default.
- W2137253321 countsByYear W21372533212017 @default.
- W2137253321 countsByYear W21372533212019 @default.
- W2137253321 countsByYear W21372533212021 @default.
- W2137253321 countsByYear W21372533212023 @default.
- W2137253321 crossrefType "journal-article" @default.
- W2137253321 hasAuthorship W2137253321A5068614908 @default.
- W2137253321 hasAuthorship W2137253321A5079168094 @default.
- W2137253321 hasAuthorship W2137253321A5085388820 @default.
- W2137253321 hasConcept C105795698 @default.
- W2137253321 hasConcept C126322002 @default.
- W2137253321 hasConcept C133925201 @default.
- W2137253321 hasConcept C149782125 @default.
- W2137253321 hasConcept C2779134260 @default.
- W2137253321 hasConcept C2908647359 @default.
- W2137253321 hasConcept C33923547 @default.
- W2137253321 hasConcept C44249647 @default.
- W2137253321 hasConcept C50440223 @default.
- W2137253321 hasConcept C71924100 @default.
- W2137253321 hasConcept C82789193 @default.
- W2137253321 hasConcept C98763669 @default.
- W2137253321 hasConcept C99454951 @default.
- W2137253321 hasConceptScore W2137253321C105795698 @default.
- W2137253321 hasConceptScore W2137253321C126322002 @default.
- W2137253321 hasConceptScore W2137253321C133925201 @default.
- W2137253321 hasConceptScore W2137253321C149782125 @default.
- W2137253321 hasConceptScore W2137253321C2779134260 @default.
- W2137253321 hasConceptScore W2137253321C2908647359 @default.
- W2137253321 hasConceptScore W2137253321C33923547 @default.
- W2137253321 hasConceptScore W2137253321C44249647 @default.
- W2137253321 hasConceptScore W2137253321C50440223 @default.
- W2137253321 hasConceptScore W2137253321C71924100 @default.
- W2137253321 hasConceptScore W2137253321C82789193 @default.
- W2137253321 hasConceptScore W2137253321C98763669 @default.
- W2137253321 hasConceptScore W2137253321C99454951 @default.
- W2137253321 hasIssue "5" @default.
- W2137253321 hasLocation W21372533211 @default.
- W2137253321 hasLocation W21372533212 @default.
- W2137253321 hasOpenAccess W2137253321 @default.
- W2137253321 hasPrimaryLocation W21372533211 @default.
- W2137253321 hasRelatedWork W1495298082 @default.
- W2137253321 hasRelatedWork W2082482010 @default.
- W2137253321 hasRelatedWork W2091677077 @default.
- W2137253321 hasRelatedWork W2125591683 @default.
- W2137253321 hasRelatedWork W2357352049 @default.
- W2137253321 hasRelatedWork W2414388375 @default.
- W2137253321 hasRelatedWork W2552050053 @default.
- W2137253321 hasRelatedWork W2765379856 @default.
- W2137253321 hasRelatedWork W4241335645 @default.
- W2137253321 hasRelatedWork W4246794592 @default.
- W2137253321 hasVolume "29" @default.
- W2137253321 isParatext "false" @default.
- W2137253321 isRetracted "false" @default.
- W2137253321 magId "2137253321" @default.
- W2137253321 workType "article" @default.