Matches in SemOpenAlex for { <https://semopenalex.org/work/W2137351301> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2137351301 abstract "In many real world scenarios, mixture models have successfully been used for analyzing features in data ([11, 13, 21]). Usually, multivariate Gaussian distributions for continuous data ([2, 8, 4]) or Bayesian networks for nominal data ([15, 16]) are applied. In this paper, we combine both approaches in a family of Bayesian models for continuous data that are able to handle univariate as well as multivariate nodes, different types of distributions, e.g. Gaussian as well as Poisson distributed nodes, and dependencies between nodes. The models we introduce can be used for unsupervised, semi-supervised as well as for fully supervised learning tasks. We evaluate our models empirically on generated synthetic data and on public datasets thereby showing that they outperform classifiers such as SVMs and logistic regression on mixture data." @default.
- W2137351301 created "2016-06-24" @default.
- W2137351301 creator A5039470755 @default.
- W2137351301 creator A5081011685 @default.
- W2137351301 creator A5082358588 @default.
- W2137351301 date "2007-12-01" @default.
- W2137351301 modified "2023-09-23" @default.
- W2137351301 title "An Efficient Constraint-Based Closed Set Mining Algorithm" @default.
- W2137351301 cites W1524704912 @default.
- W2137351301 cites W1566045017 @default.
- W2137351301 cites W1975120776 @default.
- W2137351301 cites W1977496278 @default.
- W2137351301 cites W1980503920 @default.
- W2137351301 cites W1982601383 @default.
- W2137351301 cites W2001619934 @default.
- W2137351301 cites W2011832962 @default.
- W2137351301 cites W2028233321 @default.
- W2137351301 cites W2044413689 @default.
- W2137351301 cites W2049633694 @default.
- W2137351301 cites W2082503527 @default.
- W2137351301 cites W2087757986 @default.
- W2137351301 cites W2096046065 @default.
- W2137351301 cites W2098216772 @default.
- W2137351301 cites W2109908629 @default.
- W2137351301 cites W2123504579 @default.
- W2137351301 cites W2126952775 @default.
- W2137351301 cites W2128097790 @default.
- W2137351301 cites W2146646206 @default.
- W2137351301 cites W2162034534 @default.
- W2137351301 cites W2171612826 @default.
- W2137351301 cites W2488678869 @default.
- W2137351301 cites W346145372 @default.
- W2137351301 cites W98997876 @default.
- W2137351301 doi "https://doi.org/10.1109/icmla.2007.31" @default.
- W2137351301 hasPublicationYear "2007" @default.
- W2137351301 type Work @default.
- W2137351301 sameAs 2137351301 @default.
- W2137351301 citedByCount "3" @default.
- W2137351301 countsByYear W21373513012015 @default.
- W2137351301 crossrefType "proceedings-article" @default.
- W2137351301 hasAuthorship W2137351301A5039470755 @default.
- W2137351301 hasAuthorship W2137351301A5081011685 @default.
- W2137351301 hasAuthorship W2137351301A5082358588 @default.
- W2137351301 hasConcept C107673813 @default.
- W2137351301 hasConcept C119857082 @default.
- W2137351301 hasConcept C12267149 @default.
- W2137351301 hasConcept C124101348 @default.
- W2137351301 hasConcept C136389625 @default.
- W2137351301 hasConcept C153180895 @default.
- W2137351301 hasConcept C154945302 @default.
- W2137351301 hasConcept C161584116 @default.
- W2137351301 hasConcept C199163554 @default.
- W2137351301 hasConcept C33724603 @default.
- W2137351301 hasConcept C41008148 @default.
- W2137351301 hasConcept C50644808 @default.
- W2137351301 hasConcept C61224824 @default.
- W2137351301 hasConcept C67186912 @default.
- W2137351301 hasConcept C77088390 @default.
- W2137351301 hasConceptScore W2137351301C107673813 @default.
- W2137351301 hasConceptScore W2137351301C119857082 @default.
- W2137351301 hasConceptScore W2137351301C12267149 @default.
- W2137351301 hasConceptScore W2137351301C124101348 @default.
- W2137351301 hasConceptScore W2137351301C136389625 @default.
- W2137351301 hasConceptScore W2137351301C153180895 @default.
- W2137351301 hasConceptScore W2137351301C154945302 @default.
- W2137351301 hasConceptScore W2137351301C161584116 @default.
- W2137351301 hasConceptScore W2137351301C199163554 @default.
- W2137351301 hasConceptScore W2137351301C33724603 @default.
- W2137351301 hasConceptScore W2137351301C41008148 @default.
- W2137351301 hasConceptScore W2137351301C50644808 @default.
- W2137351301 hasConceptScore W2137351301C61224824 @default.
- W2137351301 hasConceptScore W2137351301C67186912 @default.
- W2137351301 hasConceptScore W2137351301C77088390 @default.
- W2137351301 hasLocation W21373513011 @default.
- W2137351301 hasOpenAccess W2137351301 @default.
- W2137351301 hasPrimaryLocation W21373513011 @default.
- W2137351301 hasRelatedWork W1587814165 @default.
- W2137351301 hasRelatedWork W196405095 @default.
- W2137351301 hasRelatedWork W2057623054 @default.
- W2137351301 hasRelatedWork W2153798176 @default.
- W2137351301 hasRelatedWork W2355215981 @default.
- W2137351301 hasRelatedWork W2356185462 @default.
- W2137351301 hasRelatedWork W2371447506 @default.
- W2137351301 hasRelatedWork W2386767533 @default.
- W2137351301 hasRelatedWork W2557529563 @default.
- W2137351301 hasRelatedWork W2748952813 @default.
- W2137351301 isParatext "false" @default.
- W2137351301 isRetracted "false" @default.
- W2137351301 magId "2137351301" @default.
- W2137351301 workType "article" @default.