Matches in SemOpenAlex for { <https://semopenalex.org/work/W2137492849> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2137492849 endingPage "11427" @default.
- W2137492849 startingPage "11426" @default.
- W2137492849 abstract "Compared with an arbitrary reference, the protein-coding sequence of any human genome contains about 20,000 single-nucleotide variants, most of which are heterozygous, and far fewer variants of other types. When their frequency is >1% in a given population, variants are designated as common. The others are rare, including some that appear to be private to the individual or kindred studied. In each individual, at most two variations can underlie a monogenic disorder. It has thus been hoped that computational methods would be able to prioritize these variants and point at a handful of candidate culprits in the exome of any patient, not only for diagnostic but also more ambitiously for research purposes (1). This vision culminated in the utopia, or dystopia, of genetic medicine relying only on a dry laboratory to draw conclusions from genome sequencing (2). To work, such methods should show both a low false-positive (FP) prediction rate, to filter out irrelevant variants (the smaller the size of the haystack the better), and a low false-negative (FN) rate, to avoid filtering out the disease-causing mutations (the needle must stay in the haystack). Many “variant-level” approaches predict the biochemical impact of variants. Examples include sorting intolerant from tolerant (SIFT), which is based on protein sequence homology (3), polymorphism phenotyping v2 (PolyPhen-2), which is based on a combination of sequence conservation and biochemical properties of proteins and was trained by a set of known disease-causing mutations (4), and combined annotation-dependent depletion (CADD), which combines existing variant-level methods (including SIFT and PolyPhen-2) with an analysis of the impact of actual versus simulated human variants (5). In an important study, Miosge et al. show experimentally that the current software generate a low rate of FNs but a high rate of FPs (6)." @default.
- W2137492849 created "2016-06-24" @default.
- W2137492849 creator A5021904235 @default.
- W2137492849 creator A5047928635 @default.
- W2137492849 date "2015-09-08" @default.
- W2137492849 modified "2023-10-14" @default.
- W2137492849 title "Can the impact of human genetic variations be predicted?" @default.
- W2137492849 cites W1496259696 @default.
- W2137492849 cites W1939472951 @default.
- W2137492849 cites W1964426200 @default.
- W2137492849 cites W1973878786 @default.
- W2137492849 cites W1980740976 @default.
- W2137492849 cites W2013346024 @default.
- W2137492849 cites W2014747507 @default.
- W2137492849 cites W2022714591 @default.
- W2137492849 cites W2044144271 @default.
- W2137492849 cites W2045791858 @default.
- W2137492849 cites W2059145105 @default.
- W2137492849 cites W2066649243 @default.
- W2137492849 cites W2080759897 @default.
- W2137492849 cites W2082532307 @default.
- W2137492849 cites W2091077105 @default.
- W2137492849 cites W2105275733 @default.
- W2137492849 cites W2119310940 @default.
- W2137492849 cites W2138014988 @default.
- W2137492849 cites W2139365100 @default.
- W2137492849 cites W2145203699 @default.
- W2137492849 cites W2154866190 @default.
- W2137492849 cites W2160995259 @default.
- W2137492849 cites W4254615302 @default.
- W2137492849 doi "https://doi.org/10.1073/pnas.1515057112" @default.
- W2137492849 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4577181" @default.
- W2137492849 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26351682" @default.
- W2137492849 hasPublicationYear "2015" @default.
- W2137492849 type Work @default.
- W2137492849 sameAs 2137492849 @default.
- W2137492849 citedByCount "26" @default.
- W2137492849 countsByYear W21374928492015 @default.
- W2137492849 countsByYear W21374928492016 @default.
- W2137492849 countsByYear W21374928492017 @default.
- W2137492849 countsByYear W21374928492018 @default.
- W2137492849 countsByYear W21374928492019 @default.
- W2137492849 countsByYear W21374928492020 @default.
- W2137492849 countsByYear W21374928492021 @default.
- W2137492849 countsByYear W21374928492022 @default.
- W2137492849 countsByYear W21374928492023 @default.
- W2137492849 crossrefType "journal-article" @default.
- W2137492849 hasAuthorship W2137492849A5021904235 @default.
- W2137492849 hasAuthorship W2137492849A5047928635 @default.
- W2137492849 hasBestOaLocation W21374928491 @default.
- W2137492849 hasConcept C41008148 @default.
- W2137492849 hasConcept C54355233 @default.
- W2137492849 hasConcept C70721500 @default.
- W2137492849 hasConcept C86803240 @default.
- W2137492849 hasConceptScore W2137492849C41008148 @default.
- W2137492849 hasConceptScore W2137492849C54355233 @default.
- W2137492849 hasConceptScore W2137492849C70721500 @default.
- W2137492849 hasConceptScore W2137492849C86803240 @default.
- W2137492849 hasIssue "37" @default.
- W2137492849 hasLocation W21374928491 @default.
- W2137492849 hasLocation W21374928492 @default.
- W2137492849 hasLocation W21374928493 @default.
- W2137492849 hasLocation W21374928494 @default.
- W2137492849 hasOpenAccess W2137492849 @default.
- W2137492849 hasPrimaryLocation W21374928491 @default.
- W2137492849 hasRelatedWork W1920751942 @default.
- W2137492849 hasRelatedWork W1991523530 @default.
- W2137492849 hasRelatedWork W2002128513 @default.
- W2137492849 hasRelatedWork W2020824267 @default.
- W2137492849 hasRelatedWork W2031436818 @default.
- W2137492849 hasRelatedWork W2057739827 @default.
- W2137492849 hasRelatedWork W2075354549 @default.
- W2137492849 hasRelatedWork W2748952813 @default.
- W2137492849 hasRelatedWork W2899084033 @default.
- W2137492849 hasRelatedWork W2092874662 @default.
- W2137492849 hasVolume "112" @default.
- W2137492849 isParatext "false" @default.
- W2137492849 isRetracted "false" @default.
- W2137492849 magId "2137492849" @default.
- W2137492849 workType "article" @default.