Matches in SemOpenAlex for { <https://semopenalex.org/work/W2137551955> ?p ?o ?g. }
- W2137551955 endingPage "768" @default.
- W2137551955 startingPage "745" @default.
- W2137551955 abstract "A number of recent studies have used the compositional relationship between magmatic crystals and their carrier liquids to understand processes within volcanic plumbing systems. Here, an extensive compilation of electron microprobe data for Icelandic olivine and glass compositions is used to examine the distribution of the forsterite content of olivine macrocrysts within single lava flows, and the relationship of these olivines to their carrier basaltic liquids. A dataset of 7836 olivine and 233 glass point analyses was examined and 11 eruptions were identified where glass data and over 60 crystal core compositions were available. In common with many basaltic suites, single olivine crystals typically have uniform core compositions with narrow normally zoned rims. Accordingly, in 10 of the 11 Icelandic eruptions over 90% of the olivines are too forsteritic to be in equilibrium with their carrier basaltic liquids. The sampling density of the dataset permitted statistical investigation of the distribution of olivine compositions that contain information that can be used to provide new constraints on magmatic processes. The results of both kernel density estimates and Gaussian mixture modelling indicate that each of the 11 eruptions contained at least one robust peak in olivine compositions. Out of these 11 eruptions, eight show unimodal distributions of macrocryst olivine forsterite content, two are bimodal and one is polymodal. An important feature of the relationship between the carrier glass compositions and the distribution of olivine forsterite contents is that, for 10 of the 11 flows, a strong peak in the olivine compositional distribution occurs at forsterite contents that are 2–3 mol % higher than those expected for olivines in equilibrium with the carrier liquid. This offset peak is not predicted for olivines generated by simple equilibrium or fractional crystallization models. Instead, the distribution of olivine compositions and its relationship with the carrier liquids can be accounted for using a three-stage model. In the first stage, fractional crystallization and crystal settling generate a mush pile on the floor of a magma chamber. Compositional stratification is present in this mush, with the olivines at its base being more forsteritic than those at its top, reflecting the evolution of liquid compositions during fractional crystallization. The olivines in the uppermost part of the mush are close to equilibrium with basaltic liquid in the interior of the chamber. In the second stage local diffusion acts to homogenize single crystals in the mush, creating the uniform cores observed upon eruption. Concurrently the chemical gradient across the full thickness of the mush pile is altered by diffusion through the interstitial melt phase, reducing the variance of olivine core compositions in the mush. This process never reaches completion in the Icelandic flows but does generate a single peak in olivine compositions close to the mean forsterite content of the olivines in the crystal pile. Finally, the mush is disaggregated into the carrier liquid of the chamber interior shortly before eruption, creating the diffusional rim overprints. Quantitative models of this process indicate that the observed offset peak in olivine compositions can be generated after 42–8000 years of diffusion in a mush pile, depending on the mush thickness. Key features of the compositional distribution of olivines in basalts can therefore be accounted for using a simple model of mush generation and disaggregation." @default.
- W2137551955 created "2016-06-24" @default.
- W2137551955 creator A5023648463 @default.
- W2137551955 creator A5032089585 @default.
- W2137551955 date "2012-12-12" @default.
- W2137551955 modified "2023-09-30" @default.
- W2137551955 title "The Distribution of Olivine Compositions in Icelandic Basalts and Picrites" @default.
- W2137551955 cites W1489411196 @default.
- W2137551955 cites W1507573241 @default.
- W2137551955 cites W1598968865 @default.
- W2137551955 cites W1599707278 @default.
- W2137551955 cites W1617256856 @default.
- W2137551955 cites W1906914620 @default.
- W2137551955 cites W1963661785 @default.
- W2137551955 cites W1966397334 @default.
- W2137551955 cites W1971714627 @default.
- W2137551955 cites W1972385480 @default.
- W2137551955 cites W1972512576 @default.
- W2137551955 cites W1977954514 @default.
- W2137551955 cites W1984058558 @default.
- W2137551955 cites W1985216590 @default.
- W2137551955 cites W1986622361 @default.
- W2137551955 cites W1987677261 @default.
- W2137551955 cites W1988580068 @default.
- W2137551955 cites W1992148425 @default.
- W2137551955 cites W1994919247 @default.
- W2137551955 cites W2005864914 @default.
- W2137551955 cites W2011817623 @default.
- W2137551955 cites W2011832962 @default.
- W2137551955 cites W2014178669 @default.
- W2137551955 cites W2014623771 @default.
- W2137551955 cites W2029330897 @default.
- W2137551955 cites W2030059859 @default.
- W2137551955 cites W2033088756 @default.
- W2137551955 cites W2033693005 @default.
- W2137551955 cites W2035224483 @default.
- W2137551955 cites W2037371051 @default.
- W2137551955 cites W2037776995 @default.
- W2137551955 cites W2057943292 @default.
- W2137551955 cites W2060310341 @default.
- W2137551955 cites W2063498940 @default.
- W2137551955 cites W2063865114 @default.
- W2137551955 cites W2066053004 @default.
- W2137551955 cites W2068754894 @default.
- W2137551955 cites W2069004993 @default.
- W2137551955 cites W2072035940 @default.
- W2137551955 cites W2076369135 @default.
- W2137551955 cites W2076755830 @default.
- W2137551955 cites W2086294685 @default.
- W2137551955 cites W2086540936 @default.
- W2137551955 cites W2092602839 @default.
- W2137551955 cites W2093461579 @default.
- W2137551955 cites W2097428626 @default.
- W2137551955 cites W2099223845 @default.
- W2137551955 cites W2099416373 @default.
- W2137551955 cites W2105445463 @default.
- W2137551955 cites W2105716568 @default.
- W2137551955 cites W2106079840 @default.
- W2137551955 cites W2107131671 @default.
- W2137551955 cites W2109494156 @default.
- W2137551955 cites W2116673349 @default.
- W2137551955 cites W2117447759 @default.
- W2137551955 cites W2118699879 @default.
- W2137551955 cites W2119307046 @default.
- W2137551955 cites W2119691316 @default.
- W2137551955 cites W2120027408 @default.
- W2137551955 cites W2121607783 @default.
- W2137551955 cites W2126138805 @default.
- W2137551955 cites W2128389848 @default.
- W2137551955 cites W2130702998 @default.
- W2137551955 cites W2131157768 @default.
- W2137551955 cites W2137532060 @default.
- W2137551955 cites W2140641258 @default.
- W2137551955 cites W2141375290 @default.
- W2137551955 cites W2143830780 @default.
- W2137551955 cites W2145586171 @default.
- W2137551955 cites W2146645019 @default.
- W2137551955 cites W2151041036 @default.
- W2137551955 cites W2154118788 @default.
- W2137551955 cites W2163927409 @default.
- W2137551955 cites W2165632227 @default.
- W2137551955 cites W2323657016 @default.
- W2137551955 cites W2326716949 @default.
- W2137551955 cites W2335047411 @default.
- W2137551955 cites W2488678869 @default.
- W2137551955 cites W4214911971 @default.
- W2137551955 cites W4233014035 @default.
- W2137551955 cites W4239458445 @default.
- W2137551955 cites W4250970938 @default.
- W2137551955 cites W4301156473 @default.
- W2137551955 cites W4322389022 @default.
- W2137551955 cites W584384078 @default.
- W2137551955 doi "https://doi.org/10.1093/petrology/egs083" @default.
- W2137551955 hasPublicationYear "2012" @default.
- W2137551955 type Work @default.
- W2137551955 sameAs 2137551955 @default.
- W2137551955 citedByCount "75" @default.
- W2137551955 countsByYear W21375519552013 @default.