Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138085377> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2138085377 endingPage "624" @default.
- W2138085377 startingPage "615" @default.
- W2138085377 abstract "A simple modification of classical unsteady thin airfoil theory is presented which accounts for the presence and induced motion of the embedded partial chord shock waves which appear at supercritical transonic Mach numbers. The basic model is found to be divergent at zero frequency because of an unbounded growth of the shock excursion amplitude. This behavior is eliminated by introducing a term associated with the mean flow Mach number gradient near the shock. Numerical results are given for the loads induced by an oscillating flap. LASSICAL unsteady thin airfoil theory fails for low frequencies at the subsonic freestream Mach number at which local supersonic flow first occurs. The main cause of this sudden failure is the formation of a shock wave, which shields the forward region of the airfoil from aft generated disturbances. In the present study,l a simple modification of classical thin airfoil theory is given which accounts for the presence and induced motion of such shocks. Predicted airloads are shown to be in favorable agreement with both experimental observations and finite difference calculations. We assume that the unsteady flow is generated by in- finitesimal harmonic oscillations of an airfoil which is suf- ficiently thin and at sufficiently small mean angles of attack that the transonic small disturbance approximation is valid. The unsteady problem can then be linearized about the steady flow, taking due account of the (small amplitude) displacement of any embedded shocks. The linearized un- steady problem has been formulated for an arbitrary three dimensional planar lifting surface in an earlier paper.2 The linearized equations of motion depend through various coefficients on the steady local Mach number M0 (jc), which in general varies in some complicated way throughout the flowfield. Unless the functional form of M0 is very simple, the boundary value problem for the unsteady flow field must be solved by purely numerical techniques. This has been attempted using finite difference methods by Weatherill et al.3 and Traci et al. 4 However, neither of these studies properly accounted for the between the embedded shocks and the unsteady disturbance field. (Of course, this issue does not arise in nonlinear formulations of the unsteady problem, in which the interaction is implicit; flow with oscillating shocks has been successfully computed from the nonlinear small disturbance equation by, for example, Ballhaus and Goor jian.5) An alternative to direct numerical methods is to ap- proximate the steady Mach number distribution M0(x) in such a way that analytical or semianalytica l methods can be applied. Classical theory, where M0 is set equal to the freestream Mach number M^, is, of course, one example. The" @default.
- W2138085377 created "2016-06-24" @default.
- W2138085377 creator A5069791938 @default.
- W2138085377 date "1980-06-01" @default.
- W2138085377 modified "2023-10-16" @default.
- W2138085377 title "Unsteady Thin Airfoil Theory for Transonic Flows with Embedded Shocks" @default.
- W2138085377 cites W1570196012 @default.
- W2138085377 cites W1628157360 @default.
- W2138085377 cites W1991316144 @default.
- W2138085377 cites W2000182761 @default.
- W2138085377 cites W2109171460 @default.
- W2138085377 cites W2111996693 @default.
- W2138085377 cites W2562582404 @default.
- W2138085377 doi "https://doi.org/10.2514/3.50797" @default.
- W2138085377 hasPublicationYear "1980" @default.
- W2138085377 type Work @default.
- W2138085377 sameAs 2138085377 @default.
- W2138085377 citedByCount "16" @default.
- W2138085377 countsByYear W21380853772015 @default.
- W2138085377 crossrefType "journal-article" @default.
- W2138085377 hasAuthorship W2138085377A5069791938 @default.
- W2138085377 hasConcept C103838597 @default.
- W2138085377 hasConcept C112124176 @default.
- W2138085377 hasConcept C121332964 @default.
- W2138085377 hasConcept C123012627 @default.
- W2138085377 hasConcept C127413603 @default.
- W2138085377 hasConcept C13393347 @default.
- W2138085377 hasConcept C146978453 @default.
- W2138085377 hasConcept C527307 @default.
- W2138085377 hasConcept C57879066 @default.
- W2138085377 hasConceptScore W2138085377C103838597 @default.
- W2138085377 hasConceptScore W2138085377C112124176 @default.
- W2138085377 hasConceptScore W2138085377C121332964 @default.
- W2138085377 hasConceptScore W2138085377C123012627 @default.
- W2138085377 hasConceptScore W2138085377C127413603 @default.
- W2138085377 hasConceptScore W2138085377C13393347 @default.
- W2138085377 hasConceptScore W2138085377C146978453 @default.
- W2138085377 hasConceptScore W2138085377C527307 @default.
- W2138085377 hasConceptScore W2138085377C57879066 @default.
- W2138085377 hasIssue "6" @default.
- W2138085377 hasLocation W21380853771 @default.
- W2138085377 hasOpenAccess W2138085377 @default.
- W2138085377 hasPrimaryLocation W21380853771 @default.
- W2138085377 hasRelatedWork W107070986 @default.
- W2138085377 hasRelatedWork W1582710448 @default.
- W2138085377 hasRelatedWork W185017943 @default.
- W2138085377 hasRelatedWork W1994295776 @default.
- W2138085377 hasRelatedWork W2141884171 @default.
- W2138085377 hasRelatedWork W2277713374 @default.
- W2138085377 hasRelatedWork W2313944003 @default.
- W2138085377 hasRelatedWork W2320097410 @default.
- W2138085377 hasRelatedWork W2716417332 @default.
- W2138085377 hasRelatedWork W4231774860 @default.
- W2138085377 hasVolume "18" @default.
- W2138085377 isParatext "false" @default.
- W2138085377 isRetracted "false" @default.
- W2138085377 magId "2138085377" @default.
- W2138085377 workType "article" @default.