Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138225473> ?p ?o ?g. }
- W2138225473 endingPage "584" @default.
- W2138225473 startingPage "571" @default.
- W2138225473 abstract "Abstract Whether addition of oil to sandstones slows, stops, or has no influence upon pressure solution and quartz cementation has long been disputed, despite having major implications for petroleum exploration and appraisal strategies. To elucidate the effect of addition of oil to compaction, pressure solution, and cementation processes, this study utilizes an experimental approach simulating isochemical, volumetric compaction using granular halite in the presence of variable brine–oil mixtures. Each experiment, at 500 kPa effective stress, lasted 48 hours and involved repeated measurements of volumetric strain. The lithified products of experiments were examined using SEM techniques. After 30 hours, approximately 4% volumetric strain occurs when the brine–oil ratio is 100:0 (pure brine). Fractures are rare in samples from experiments undertaken with pure brine so that pressure solution, and concomitant cementation, must be the compaction mechanism. When the brine–oil ratio is decreased from 100:0 to 40:60, the volumetric strain remains about 4% but there are more fractures, as quantified from SEM image analysis. These observations suggest that, although pressure solution has occurred, some of the volumetric strain is the result of fracturing, implying that pressure solution has been less effective in the presence of some oil than it is in the presence of pure brine. When the brine–oil ratio is decreased further from 40:60 to 5:95, the volumetric strain increases up to 7.3%; SEM image analysis reveals that the strain is predominantly due to grain fracturing. This change from pressure solution to grain fracturing is likely due to heterogeneous pressure solution resulting from heterogeneous distribution of stresses. Brine-coated grain contacts undergo pressure solution but oil-coated grain contacts experience increasing stress up to the point of failure, as the surrounding grain pack compacts. When the brine–oil ratio is decreased to less than 5:95, volumetric strain decreased to about 1% with few induced fractures and little pressure solution. Compaction is negligible when the brine–oil ratio is 0:100 (only oil in the pores) and fractures are negligible. Halite is more water-soluble and more hygroscopic than quartz so that water will cling to halite surfaces more tenaciously than to quartz. Since even halite has its mechanism of volumetric strain affected when the brine–oil ratio is less than 40:60, quartz pressure solution and subsequent cementation is even more likely to be affected by oil filling. This experimental study suggests that the mechanism and extent of compaction and subsequent cementation in sandstones is strongly affected by the addition of oil." @default.
- W2138225473 created "2016-06-24" @default.
- W2138225473 creator A5000493059 @default.
- W2138225473 creator A5021444206 @default.
- W2138225473 creator A5032902534 @default.
- W2138225473 creator A5047983686 @default.
- W2138225473 date "2012-08-20" @default.
- W2138225473 modified "2023-09-25" @default.
- W2138225473 title "The Effect of Oil Saturation On the Mechanism of Compaction In Granular Materials: Higher Oil Saturations Lead To More Grain Fracturing and Less Pressure Solution" @default.
- W2138225473 cites W1488821894 @default.
- W2138225473 cites W1582637980 @default.
- W2138225473 cites W1592669541 @default.
- W2138225473 cites W1667665679 @default.
- W2138225473 cites W1965641469 @default.
- W2138225473 cites W1968837065 @default.
- W2138225473 cites W1969402793 @default.
- W2138225473 cites W1978597810 @default.
- W2138225473 cites W1982455838 @default.
- W2138225473 cites W1983375924 @default.
- W2138225473 cites W1987294817 @default.
- W2138225473 cites W1987445729 @default.
- W2138225473 cites W1988649970 @default.
- W2138225473 cites W2001379080 @default.
- W2138225473 cites W2003359808 @default.
- W2138225473 cites W2010292438 @default.
- W2138225473 cites W2011307050 @default.
- W2138225473 cites W2015399809 @default.
- W2138225473 cites W2024402527 @default.
- W2138225473 cites W2025103415 @default.
- W2138225473 cites W2026982741 @default.
- W2138225473 cites W2028034522 @default.
- W2138225473 cites W2034687581 @default.
- W2138225473 cites W2035668746 @default.
- W2138225473 cites W2038108991 @default.
- W2138225473 cites W2038791474 @default.
- W2138225473 cites W2042401481 @default.
- W2138225473 cites W2042413515 @default.
- W2138225473 cites W2042806752 @default.
- W2138225473 cites W2052977443 @default.
- W2138225473 cites W2056120539 @default.
- W2138225473 cites W2064552824 @default.
- W2138225473 cites W2066264050 @default.
- W2138225473 cites W2067261112 @default.
- W2138225473 cites W2074110635 @default.
- W2138225473 cites W2076221198 @default.
- W2138225473 cites W2077074530 @default.
- W2138225473 cites W2083603261 @default.
- W2138225473 cites W2090114189 @default.
- W2138225473 cites W2093703109 @default.
- W2138225473 cites W2103129551 @default.
- W2138225473 cites W2103553031 @default.
- W2138225473 cites W2103900319 @default.
- W2138225473 cites W2110433371 @default.
- W2138225473 cites W2120108164 @default.
- W2138225473 cites W2122290346 @default.
- W2138225473 cites W2122438390 @default.
- W2138225473 cites W2124165774 @default.
- W2138225473 cites W2128118921 @default.
- W2138225473 cites W2136411870 @default.
- W2138225473 cites W2141536566 @default.
- W2138225473 cites W2143555233 @default.
- W2138225473 cites W2143760773 @default.
- W2138225473 cites W2147767078 @default.
- W2138225473 cites W2155380028 @default.
- W2138225473 cites W2159532919 @default.
- W2138225473 cites W2159939975 @default.
- W2138225473 cites W2165678672 @default.
- W2138225473 cites W2316131249 @default.
- W2138225473 cites W2327460163 @default.
- W2138225473 cites W2080646852 @default.
- W2138225473 doi "https://doi.org/10.2110/jsr.2012.44" @default.
- W2138225473 hasPublicationYear "2012" @default.
- W2138225473 type Work @default.
- W2138225473 sameAs 2138225473 @default.
- W2138225473 citedByCount "23" @default.
- W2138225473 countsByYear W21382254732013 @default.
- W2138225473 countsByYear W21382254732014 @default.
- W2138225473 countsByYear W21382254732015 @default.
- W2138225473 countsByYear W21382254732016 @default.
- W2138225473 countsByYear W21382254732017 @default.
- W2138225473 countsByYear W21382254732018 @default.
- W2138225473 countsByYear W21382254732019 @default.
- W2138225473 countsByYear W21382254732020 @default.
- W2138225473 countsByYear W21382254732021 @default.
- W2138225473 countsByYear W21382254732022 @default.
- W2138225473 crossrefType "journal-article" @default.
- W2138225473 hasAuthorship W2138225473A5000493059 @default.
- W2138225473 hasAuthorship W2138225473A5021444206 @default.
- W2138225473 hasAuthorship W2138225473A5032902534 @default.
- W2138225473 hasAuthorship W2138225473A5047983686 @default.
- W2138225473 hasConcept C114614502 @default.
- W2138225473 hasConcept C114793014 @default.
- W2138225473 hasConcept C127313418 @default.
- W2138225473 hasConcept C187320778 @default.
- W2138225473 hasConcept C196715460 @default.
- W2138225473 hasConcept C199289684 @default.
- W2138225473 hasConcept C2777093003 @default.
- W2138225473 hasConcept C33923547 @default.