Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138341763> ?p ?o ?g. }
- W2138341763 endingPage "32472" @default.
- W2138341763 startingPage "32466" @default.
- W2138341763 abstract "In contrast to lipoprotein-mediated sterol uptake, free sterol influx by eukaryotic cells is poorly understood. To identify components of non-lipoprotein-mediated sterol uptake, we utilized strains of Saccharomyces cerevisiae that accumulate exogenous sterol due to a neomorphic mutation in the transcription factor, UPC2. Two congenic upc2-1strains, differing quantitatively in aerobic sterol uptake due to a modifying mutation in the HAP1 transcription factor, were compared using DNA microarrays. We identified 9 genes as responsive toUPC2 that were also induced under anaerobiosis, when sterol uptake is essential. Deletion mutants in these genes were assessed for sterol influx in the upc2-1 background. UPC2itself was up-regulated under these conditions and was required for aerobic sterol influx. Deletion of the ATP-binding cassette transporters YOR011w (AUS1) orPDR11, or a putative cell wall protein encoded byDAN1, significantly reduced sterol influx. Sodium azide and vanadate inhibited sterol uptake, consistent with the participation of ATP-binding cassette transporters. We hypothesized that the physiological role of Aus1p and Pdr11p is to mediate sterol uptake when sterol biosynthesis is compromised. Accordingly, expression ofAUS1 or PDR11 was required for anaerobic growth and sterol uptake. We proposed similar molecules may be important components of sterol uptake in all eukaryotes. In contrast to lipoprotein-mediated sterol uptake, free sterol influx by eukaryotic cells is poorly understood. To identify components of non-lipoprotein-mediated sterol uptake, we utilized strains of Saccharomyces cerevisiae that accumulate exogenous sterol due to a neomorphic mutation in the transcription factor, UPC2. Two congenic upc2-1strains, differing quantitatively in aerobic sterol uptake due to a modifying mutation in the HAP1 transcription factor, were compared using DNA microarrays. We identified 9 genes as responsive toUPC2 that were also induced under anaerobiosis, when sterol uptake is essential. Deletion mutants in these genes were assessed for sterol influx in the upc2-1 background. UPC2itself was up-regulated under these conditions and was required for aerobic sterol influx. Deletion of the ATP-binding cassette transporters YOR011w (AUS1) orPDR11, or a putative cell wall protein encoded byDAN1, significantly reduced sterol influx. Sodium azide and vanadate inhibited sterol uptake, consistent with the participation of ATP-binding cassette transporters. We hypothesized that the physiological role of Aus1p and Pdr11p is to mediate sterol uptake when sterol biosynthesis is compromised. Accordingly, expression ofAUS1 or PDR11 was required for anaerobic growth and sterol uptake. We proposed similar molecules may be important components of sterol uptake in all eukaryotes. ATP-binding cassette open reading frame Unesterified sterol is an essential component of all eukaryotic membranes where it influences membrane fluidity and the activity and localization of many proteins. In mammalian cells, the processes that control the supply of this commodity are precisely regulated, primarily at the transcriptional level. Although the endogenous synthesis and storage (as ester) of cholesterol are critical aspects of this homeostasis, it is the uptake of exogenous cholesterol that presents the greatest challenge to this equilibrium. The endocytosis of cholesterol-containing low density lipoprotein particles by the low density lipoprotein receptor or the selective uptake of cholesteryl ester from high density lipoproteins by the scavenger receptor type BI are transcriptionally regulated events (1Krieger M. Annu. Rev. Biochem. 1999; 68: 523-558Crossref PubMed Scopus (458) Google Scholar, 2Repa J.J. Turley S.D. Lobaccaro J.A. Medina J., Li, L. Lustig K. Shan B. Heyman R.A. Dietschy J.M. Mangelsdorf D.J. Science. 2000; 289: 1524-1529Crossref PubMed Scopus (1144) Google Scholar, 3Chinetti G. Gbaguidi F.G. Griglio S. Mallat Z. Antonucci M. Poulain P. Chapman J. Fruchart J.C. Tedgui A. Najib-Fruchart J. Staels B. Circulation. 2000; 101: 2411-2417Crossref PubMed Scopus (385) Google Scholar). The reverse process of sterol efflux to high density lipoproteins requires ABCA1, a member of the ATP-binding cassette (ABC)1 family of membrane transporters which is also regulated transcriptionally (4Schmitz G. Kaminski W.E. Orso E. Curr. Opin. Lipidol. 2000; 11: 493-501Crossref PubMed Scopus (115) Google Scholar). In contrast, the mechanisms and regulation of non-lipoprotein-mediated free sterol influx are poorly understood. This saturable process is of major relevance to the uptake of dietary cholesterol from bile acid micelles into the brush border membranes of enterocytes (5Hernandez M. Montenegro J. Steiner M. Kim D. Sparrow C. Detmers P.A. Wright S.D. Chao Y.S. Biochim. Biophys. Acta. 2000; 1486: 232-242Crossref PubMed Scopus (55) Google Scholar). However, the molecular components of this phenomenon have yet to be identified despite the observation that it can be inhibited by small molecules such as sterol glycosides (6Detmers P.A. Patel S. Hernandez M. Montenegro J. Lisnock J.M. Pikounis B. Steiner M. Kim D. Sparrow C. Chao Y.S. Wright S.D. Biochim. Biophys. Acta. 2000; 1486: 243-252Crossref PubMed Scopus (48) Google Scholar).The budding yeast, Saccharomyces cerevisiae, exhibits many aspects of sterol homeostasis in common with higher eukaryotes and has been a useful model for the study of sterol trafficking (7Sturley S.L. Curr. Opin. Lipidol. 1998; 9: 85-91Crossref PubMed Scopus (12) Google Scholar, 8Sturley S.L. Biochim. Biophys. Acta. 2000; 1529: 155-163Crossref PubMed Scopus (71) Google Scholar). Normal or “wild-type” strains of S. cerevisiae do not significantly accumulate exogenous sterol from the media when grown aerobically but, instead, satisfy their sterol requirements by way of ergosterol biosynthesis. This phenomenon is referred to as aerobic sterol exclusion (9Lorenz R.T. Parks L.W. Lipids. 1991; 26: 598-603Crossref PubMed Scopus (55) Google Scholar). However, when sterol biosynthesis is compromised, for example by anaerobic growth, sterol uptake is required for viability (10Gollub E.G. Trocha P. Liu P.K. Sprinson D.B. Biochem. Biophys. Res. Commun. 1974; 56: 471-477Crossref PubMed Scopus (30) Google Scholar). Completely anaerobic systems are difficult to maintain and allow for little experimental manipulation. For this reason, studies of sterol influx in yeast have primarily employed sterol auxotrophs or mutants in heme synthesis which accumulate sterol from the media when grown aerobically (11Lorenz R.T. Rodriguez R.J. Lewis T.A. Parks L.W. J. Bacteriol. 1986; 167: 981-985Crossref PubMed Google Scholar). In the background of heme and sterol competence, aerobic sterol influx has been achieved using theupc2-1 mutant strain (12Lewis T.L. Keesler G.A. Fenner G.P. Parks L.W. Yeast. 1988; 4: 93-106Crossref PubMed Scopus (61) Google Scholar), the molecular basis of which is a single nucleotide change in the UPC2 (UPtakeControl) open reading frame (13Crowley J.H. Leak F.W., Jr. Shianna K.V. Tove S. Parks L.W. J. Bacteriol. 1998; 180: 4177-4183Crossref PubMed Google Scholar). UPC2 encodes a member of a fungal regulatory family containing the Zn(II)2Cys6 binuclear cluster DNA binding domain. Upc2p activates transcription via binding to sterol regulatory elements of some enzymes of ergosterol biosynthesis (14Vik A. Rine J. Mol. Cell. Biol. 2001; 21: 6395-6405Crossref PubMed Scopus (196) Google Scholar). Deletion of the UPC2 gene does not result in sterol uptake, suggesting that the upc2-1 allele (a glycine to aspartic acid change at residue 888) is a gain-of-function mutation (13Crowley J.H. Leak F.W., Jr. Shianna K.V. Tove S. Parks L.W. J. Bacteriol. 1998; 180: 4177-4183Crossref PubMed Google Scholar).We hypothesized that sterol uptake in yeast results from altered transcriptional regulation of one or more targets of UPC2. We therefore conducted a genome-wide transcriptional analysis of normal and upc2-1 mutant strains grown under aerobic conditions. By virtue of this expression profiling, we have identified a subset of 9 genes regulated by UPC2 and induced by anaerobiosis that are putative components of free sterol influx. Based on the null phenotypes of each candidate gene, the major determinants of sterol uptake are two members of the ABC superfamily of membrane transporters, AUS1 andPDR11. Unesterified sterol is an essential component of all eukaryotic membranes where it influences membrane fluidity and the activity and localization of many proteins. In mammalian cells, the processes that control the supply of this commodity are precisely regulated, primarily at the transcriptional level. Although the endogenous synthesis and storage (as ester) of cholesterol are critical aspects of this homeostasis, it is the uptake of exogenous cholesterol that presents the greatest challenge to this equilibrium. The endocytosis of cholesterol-containing low density lipoprotein particles by the low density lipoprotein receptor or the selective uptake of cholesteryl ester from high density lipoproteins by the scavenger receptor type BI are transcriptionally regulated events (1Krieger M. Annu. Rev. Biochem. 1999; 68: 523-558Crossref PubMed Scopus (458) Google Scholar, 2Repa J.J. Turley S.D. Lobaccaro J.A. Medina J., Li, L. Lustig K. Shan B. Heyman R.A. Dietschy J.M. Mangelsdorf D.J. Science. 2000; 289: 1524-1529Crossref PubMed Scopus (1144) Google Scholar, 3Chinetti G. Gbaguidi F.G. Griglio S. Mallat Z. Antonucci M. Poulain P. Chapman J. Fruchart J.C. Tedgui A. Najib-Fruchart J. Staels B. Circulation. 2000; 101: 2411-2417Crossref PubMed Scopus (385) Google Scholar). The reverse process of sterol efflux to high density lipoproteins requires ABCA1, a member of the ATP-binding cassette (ABC)1 family of membrane transporters which is also regulated transcriptionally (4Schmitz G. Kaminski W.E. Orso E. Curr. Opin. Lipidol. 2000; 11: 493-501Crossref PubMed Scopus (115) Google Scholar). In contrast, the mechanisms and regulation of non-lipoprotein-mediated free sterol influx are poorly understood. This saturable process is of major relevance to the uptake of dietary cholesterol from bile acid micelles into the brush border membranes of enterocytes (5Hernandez M. Montenegro J. Steiner M. Kim D. Sparrow C. Detmers P.A. Wright S.D. Chao Y.S. Biochim. Biophys. Acta. 2000; 1486: 232-242Crossref PubMed Scopus (55) Google Scholar). However, the molecular components of this phenomenon have yet to be identified despite the observation that it can be inhibited by small molecules such as sterol glycosides (6Detmers P.A. Patel S. Hernandez M. Montenegro J. Lisnock J.M. Pikounis B. Steiner M. Kim D. Sparrow C. Chao Y.S. Wright S.D. Biochim. Biophys. Acta. 2000; 1486: 243-252Crossref PubMed Scopus (48) Google Scholar). The budding yeast, Saccharomyces cerevisiae, exhibits many aspects of sterol homeostasis in common with higher eukaryotes and has been a useful model for the study of sterol trafficking (7Sturley S.L. Curr. Opin. Lipidol. 1998; 9: 85-91Crossref PubMed Scopus (12) Google Scholar, 8Sturley S.L. Biochim. Biophys. Acta. 2000; 1529: 155-163Crossref PubMed Scopus (71) Google Scholar). Normal or “wild-type” strains of S. cerevisiae do not significantly accumulate exogenous sterol from the media when grown aerobically but, instead, satisfy their sterol requirements by way of ergosterol biosynthesis. This phenomenon is referred to as aerobic sterol exclusion (9Lorenz R.T. Parks L.W. Lipids. 1991; 26: 598-603Crossref PubMed Scopus (55) Google Scholar). However, when sterol biosynthesis is compromised, for example by anaerobic growth, sterol uptake is required for viability (10Gollub E.G. Trocha P. Liu P.K. Sprinson D.B. Biochem. Biophys. Res. Commun. 1974; 56: 471-477Crossref PubMed Scopus (30) Google Scholar). Completely anaerobic systems are difficult to maintain and allow for little experimental manipulation. For this reason, studies of sterol influx in yeast have primarily employed sterol auxotrophs or mutants in heme synthesis which accumulate sterol from the media when grown aerobically (11Lorenz R.T. Rodriguez R.J. Lewis T.A. Parks L.W. J. Bacteriol. 1986; 167: 981-985Crossref PubMed Google Scholar). In the background of heme and sterol competence, aerobic sterol influx has been achieved using theupc2-1 mutant strain (12Lewis T.L. Keesler G.A. Fenner G.P. Parks L.W. Yeast. 1988; 4: 93-106Crossref PubMed Scopus (61) Google Scholar), the molecular basis of which is a single nucleotide change in the UPC2 (UPtakeControl) open reading frame (13Crowley J.H. Leak F.W., Jr. Shianna K.V. Tove S. Parks L.W. J. Bacteriol. 1998; 180: 4177-4183Crossref PubMed Google Scholar). UPC2 encodes a member of a fungal regulatory family containing the Zn(II)2Cys6 binuclear cluster DNA binding domain. Upc2p activates transcription via binding to sterol regulatory elements of some enzymes of ergosterol biosynthesis (14Vik A. Rine J. Mol. Cell. Biol. 2001; 21: 6395-6405Crossref PubMed Scopus (196) Google Scholar). Deletion of the UPC2 gene does not result in sterol uptake, suggesting that the upc2-1 allele (a glycine to aspartic acid change at residue 888) is a gain-of-function mutation (13Crowley J.H. Leak F.W., Jr. Shianna K.V. Tove S. Parks L.W. J. Bacteriol. 1998; 180: 4177-4183Crossref PubMed Google Scholar). We hypothesized that sterol uptake in yeast results from altered transcriptional regulation of one or more targets of UPC2. We therefore conducted a genome-wide transcriptional analysis of normal and upc2-1 mutant strains grown under aerobic conditions. By virtue of this expression profiling, we have identified a subset of 9 genes regulated by UPC2 and induced by anaerobiosis that are putative components of free sterol influx. Based on the null phenotypes of each candidate gene, the major determinants of sterol uptake are two members of the ABC superfamily of membrane transporters, AUS1 andPDR11. We thank Vladin Miljkovic of the GeneChip array facility of the Institute of Cancer Genetics for expert assistance." @default.
- W2138341763 created "2016-06-24" @default.
- W2138341763 creator A5002948998 @default.
- W2138341763 creator A5023841024 @default.
- W2138341763 creator A5050585635 @default.
- W2138341763 creator A5055872608 @default.
- W2138341763 creator A5067932540 @default.
- W2138341763 creator A5088261697 @default.
- W2138341763 date "2002-09-01" @default.
- W2138341763 modified "2023-10-18" @default.
- W2138341763 title "Transcriptional Profiling Identifies Two Members of the ATP-binding Cassette Transporter Superfamily Required for Sterol Uptake in Yeast" @default.
- W2138341763 cites W1510167055 @default.
- W2138341763 cites W1591670239 @default.
- W2138341763 cites W1607399348 @default.
- W2138341763 cites W1860908381 @default.
- W2138341763 cites W1935398115 @default.
- W2138341763 cites W1968917541 @default.
- W2138341763 cites W1973782344 @default.
- W2138341763 cites W1980356631 @default.
- W2138341763 cites W1982737042 @default.
- W2138341763 cites W1992088253 @default.
- W2138341763 cites W1998179008 @default.
- W2138341763 cites W2000250937 @default.
- W2138341763 cites W2002192641 @default.
- W2138341763 cites W2006836034 @default.
- W2138341763 cites W2008404592 @default.
- W2138341763 cites W2011381842 @default.
- W2138341763 cites W2020892886 @default.
- W2138341763 cites W2034855418 @default.
- W2138341763 cites W2052602639 @default.
- W2138341763 cites W2076546793 @default.
- W2138341763 cites W2085390789 @default.
- W2138341763 cites W2085909854 @default.
- W2138341763 cites W2090094492 @default.
- W2138341763 cites W2099378835 @default.
- W2138341763 cites W2102865022 @default.
- W2138341763 cites W2104140801 @default.
- W2138341763 cites W2108552532 @default.
- W2138341763 cites W2135187880 @default.
- W2138341763 cites W2145699815 @default.
- W2138341763 cites W2156818917 @default.
- W2138341763 cites W2159654630 @default.
- W2138341763 cites W2160849328 @default.
- W2138341763 cites W2167347342 @default.
- W2138341763 cites W2207025923 @default.
- W2138341763 doi "https://doi.org/10.1074/jbc.m204707200" @default.
- W2138341763 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12077145" @default.
- W2138341763 hasPublicationYear "2002" @default.
- W2138341763 type Work @default.
- W2138341763 sameAs 2138341763 @default.
- W2138341763 citedByCount "235" @default.
- W2138341763 countsByYear W21383417632012 @default.
- W2138341763 countsByYear W21383417632013 @default.
- W2138341763 countsByYear W21383417632014 @default.
- W2138341763 countsByYear W21383417632015 @default.
- W2138341763 countsByYear W21383417632016 @default.
- W2138341763 countsByYear W21383417632017 @default.
- W2138341763 countsByYear W21383417632018 @default.
- W2138341763 countsByYear W21383417632019 @default.
- W2138341763 countsByYear W21383417632020 @default.
- W2138341763 countsByYear W21383417632021 @default.
- W2138341763 countsByYear W21383417632022 @default.
- W2138341763 countsByYear W21383417632023 @default.
- W2138341763 crossrefType "journal-article" @default.
- W2138341763 hasAuthorship W2138341763A5002948998 @default.
- W2138341763 hasAuthorship W2138341763A5023841024 @default.
- W2138341763 hasAuthorship W2138341763A5050585635 @default.
- W2138341763 hasAuthorship W2138341763A5055872608 @default.
- W2138341763 hasAuthorship W2138341763A5067932540 @default.
- W2138341763 hasAuthorship W2138341763A5088261697 @default.
- W2138341763 hasBestOaLocation W21383417631 @default.
- W2138341763 hasConcept C104317684 @default.
- W2138341763 hasConcept C149011108 @default.
- W2138341763 hasConcept C185592680 @default.
- W2138341763 hasConcept C2777576037 @default.
- W2138341763 hasConcept C2778163477 @default.
- W2138341763 hasConcept C2778718757 @default.
- W2138341763 hasConcept C2779222958 @default.
- W2138341763 hasConcept C44312359 @default.
- W2138341763 hasConcept C55493867 @default.
- W2138341763 hasConcept C70721500 @default.
- W2138341763 hasConcept C86803240 @default.
- W2138341763 hasConcept C92028520 @default.
- W2138341763 hasConceptScore W2138341763C104317684 @default.
- W2138341763 hasConceptScore W2138341763C149011108 @default.
- W2138341763 hasConceptScore W2138341763C185592680 @default.
- W2138341763 hasConceptScore W2138341763C2777576037 @default.
- W2138341763 hasConceptScore W2138341763C2778163477 @default.
- W2138341763 hasConceptScore W2138341763C2778718757 @default.
- W2138341763 hasConceptScore W2138341763C2779222958 @default.
- W2138341763 hasConceptScore W2138341763C44312359 @default.
- W2138341763 hasConceptScore W2138341763C55493867 @default.
- W2138341763 hasConceptScore W2138341763C70721500 @default.
- W2138341763 hasConceptScore W2138341763C86803240 @default.
- W2138341763 hasConceptScore W2138341763C92028520 @default.
- W2138341763 hasIssue "36" @default.
- W2138341763 hasLocation W21383417631 @default.
- W2138341763 hasOpenAccess W2138341763 @default.