Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138364347> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2138364347 endingPage "27" @default.
- W2138364347 startingPage "19" @default.
- W2138364347 abstract "In this study, a four-layer feed-forward neural network is constructed and applied to determine a mapping associating mix design and testing factors of asphalt concrete samples with their performance in conductance to flow or permeability. To generate data for the neural network model, a total of 100 field cores from 50 different mixes (two replicate cores per mix) are tested in the laboratory for permeability and mix volumetric properties. The significant factors that affect asphalt permeability are identified using simple and multiple regression analysis. The analyses results show that permeability of an asphalt concrete is affected mainly by five factors: (1) air void (Va); (2) the grain size through which 10% materials pass (d10); (3) the grain size through which 30% materials pass (d30); (4) saturation, or the CoreLok Infiltration Coefficient (CIC); and (5) effective asphalt to dust ratio (Pbe∕P0.075). The significant factors are then used to define the domain of a neural network. Regardless of the significant factors included in defining the domain of such a mapping, a principle component analysis is performed to ascertain the most significant of these factors. The network is trained using the Levenberg-Marquardt algorithm. Using randomly generated synaptic weights to initialize the training algorithm, histograms are compiled and outputs are estimated. Excellent agreement is observed between simulation and laboratory data. It is believed that the developed NN model will be a useful tool in the study of asphalt pavement construction and maintenance." @default.
- W2138364347 created "2016-06-24" @default.
- W2138364347 creator A5001805598 @default.
- W2138364347 creator A5025266838 @default.
- W2138364347 creator A5074889707 @default.
- W2138364347 date "2005-02-01" @default.
- W2138364347 modified "2023-10-14" @default.
- W2138364347 title "Neural Network Model for Asphalt Concrete Permeability" @default.
- W2138364347 cites W2053221505 @default.
- W2138364347 cites W2058538513 @default.
- W2138364347 cites W2135752701 @default.
- W2138364347 cites W2138977243 @default.
- W2138364347 cites W2160218817 @default.
- W2138364347 doi "https://doi.org/10.1061/(asce)0899-1561(2005)17:1(19)" @default.
- W2138364347 hasPublicationYear "2005" @default.
- W2138364347 type Work @default.
- W2138364347 sameAs 2138364347 @default.
- W2138364347 citedByCount "98" @default.
- W2138364347 countsByYear W21383643472012 @default.
- W2138364347 countsByYear W21383643472013 @default.
- W2138364347 countsByYear W21383643472014 @default.
- W2138364347 countsByYear W21383643472015 @default.
- W2138364347 countsByYear W21383643472016 @default.
- W2138364347 countsByYear W21383643472017 @default.
- W2138364347 countsByYear W21383643472018 @default.
- W2138364347 countsByYear W21383643472019 @default.
- W2138364347 countsByYear W21383643472020 @default.
- W2138364347 countsByYear W21383643472021 @default.
- W2138364347 countsByYear W21383643472022 @default.
- W2138364347 countsByYear W21383643472023 @default.
- W2138364347 crossrefType "journal-article" @default.
- W2138364347 hasAuthorship W2138364347A5001805598 @default.
- W2138364347 hasAuthorship W2138364347A5025266838 @default.
- W2138364347 hasAuthorship W2138364347A5074889707 @default.
- W2138364347 hasConcept C119857082 @default.
- W2138364347 hasConcept C120882062 @default.
- W2138364347 hasConcept C127413603 @default.
- W2138364347 hasConcept C159985019 @default.
- W2138364347 hasConcept C168056786 @default.
- W2138364347 hasConcept C185592680 @default.
- W2138364347 hasConcept C186060115 @default.
- W2138364347 hasConcept C187320778 @default.
- W2138364347 hasConcept C192562407 @default.
- W2138364347 hasConcept C39432304 @default.
- W2138364347 hasConcept C41008148 @default.
- W2138364347 hasConcept C41625074 @default.
- W2138364347 hasConcept C50644808 @default.
- W2138364347 hasConcept C55493867 @default.
- W2138364347 hasConcept C86803240 @default.
- W2138364347 hasConceptScore W2138364347C119857082 @default.
- W2138364347 hasConceptScore W2138364347C120882062 @default.
- W2138364347 hasConceptScore W2138364347C127413603 @default.
- W2138364347 hasConceptScore W2138364347C159985019 @default.
- W2138364347 hasConceptScore W2138364347C168056786 @default.
- W2138364347 hasConceptScore W2138364347C185592680 @default.
- W2138364347 hasConceptScore W2138364347C186060115 @default.
- W2138364347 hasConceptScore W2138364347C187320778 @default.
- W2138364347 hasConceptScore W2138364347C192562407 @default.
- W2138364347 hasConceptScore W2138364347C39432304 @default.
- W2138364347 hasConceptScore W2138364347C41008148 @default.
- W2138364347 hasConceptScore W2138364347C41625074 @default.
- W2138364347 hasConceptScore W2138364347C50644808 @default.
- W2138364347 hasConceptScore W2138364347C55493867 @default.
- W2138364347 hasConceptScore W2138364347C86803240 @default.
- W2138364347 hasIssue "1" @default.
- W2138364347 hasLocation W21383643471 @default.
- W2138364347 hasOpenAccess W2138364347 @default.
- W2138364347 hasPrimaryLocation W21383643471 @default.
- W2138364347 hasRelatedWork W1499124204 @default.
- W2138364347 hasRelatedWork W1985010875 @default.
- W2138364347 hasRelatedWork W1987591823 @default.
- W2138364347 hasRelatedWork W2353133839 @default.
- W2138364347 hasRelatedWork W2356117781 @default.
- W2138364347 hasRelatedWork W2377206986 @default.
- W2138364347 hasRelatedWork W3217299740 @default.
- W2138364347 hasRelatedWork W4239581283 @default.
- W2138364347 hasRelatedWork W571096053 @default.
- W2138364347 hasRelatedWork W587358849 @default.
- W2138364347 hasVolume "17" @default.
- W2138364347 isParatext "false" @default.
- W2138364347 isRetracted "false" @default.
- W2138364347 magId "2138364347" @default.
- W2138364347 workType "article" @default.