Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138457014> ?p ?o ?g. }
- W2138457014 endingPage "630" @default.
- W2138457014 startingPage "622" @default.
- W2138457014 abstract "We present Stochastic Neighbor Compression (SNC), an algorithm to compress a dataset for the purpose of k-nearest neighbor (kNN) classification. Given training data, SNC learns a much smaller synthetic data set, that minimizes the stochastic 1-nearest neighbor classification error on the training data. This approach has several appealing properties: due to its small size, the compressed set speeds up kNN testing drastically (up to several orders of magnitude, in our experiments); it makes the kNN classifier substantially more robust to label noise; on 4 of 7 data sets it yields lower test error than kNN on the entire training set, even at compression ratios as low as 2%; finally, the SNC compression leads to impressive speed ups over kNN even when kNN and SNC are both used with ball-tree data structures, hashing, and LMNN dimensionality reduction--demonstrating that it is complementary to existing state-of-the-art algorithms to speed up kNN classification and leads to substantial further improvements." @default.
- W2138457014 created "2016-06-24" @default.
- W2138457014 creator A5006380227 @default.
- W2138457014 creator A5013647396 @default.
- W2138457014 creator A5035990793 @default.
- W2138457014 creator A5073763227 @default.
- W2138457014 date "2014-06-21" @default.
- W2138457014 modified "2023-09-26" @default.
- W2138457014 title "Stochastic Neighbor Compression" @default.
- W2138457014 cites W100531594 @default.
- W2138457014 cites W1496508106 @default.
- W2138457014 cites W1502916507 @default.
- W2138457014 cites W1506806321 @default.
- W2138457014 cites W1591261915 @default.
- W2138457014 cites W1593040460 @default.
- W2138457014 cites W1663973292 @default.
- W2138457014 cites W1832221731 @default.
- W2138457014 cites W1983734765 @default.
- W2138457014 cites W1988418786 @default.
- W2138457014 cites W1990863955 @default.
- W2138457014 cites W1994410331 @default.
- W2138457014 cites W2004283225 @default.
- W2138457014 cites W2014987111 @default.
- W2138457014 cites W2019762723 @default.
- W2138457014 cites W2046079134 @default.
- W2138457014 cites W2048620831 @default.
- W2138457014 cites W2057175746 @default.
- W2138457014 cites W2069463273 @default.
- W2138457014 cites W2073910102 @default.
- W2138457014 cites W2098631313 @default.
- W2138457014 cites W2106053110 @default.
- W2138457014 cites W2122111042 @default.
- W2138457014 cites W2123921160 @default.
- W2138457014 cites W2133296809 @default.
- W2138457014 cites W2137291015 @default.
- W2138457014 cites W2144935315 @default.
- W2138457014 cites W2145065594 @default.
- W2138457014 cites W2150800840 @default.
- W2138457014 cites W2157444450 @default.
- W2138457014 cites W2161627023 @default.
- W2138457014 cites W2165558283 @default.
- W2138457014 cites W2168873314 @default.
- W2138457014 cites W2169053198 @default.
- W2138457014 cites W2169495281 @default.
- W2138457014 cites W2172127734 @default.
- W2138457014 cites W2187089797 @default.
- W2138457014 hasPublicationYear "2014" @default.
- W2138457014 type Work @default.
- W2138457014 sameAs 2138457014 @default.
- W2138457014 citedByCount "24" @default.
- W2138457014 countsByYear W21384570142014 @default.
- W2138457014 countsByYear W21384570142015 @default.
- W2138457014 countsByYear W21384570142016 @default.
- W2138457014 countsByYear W21384570142017 @default.
- W2138457014 countsByYear W21384570142018 @default.
- W2138457014 countsByYear W21384570142019 @default.
- W2138457014 countsByYear W21384570142020 @default.
- W2138457014 countsByYear W21384570142021 @default.
- W2138457014 crossrefType "proceedings-article" @default.
- W2138457014 hasAuthorship W2138457014A5006380227 @default.
- W2138457014 hasAuthorship W2138457014A5013647396 @default.
- W2138457014 hasAuthorship W2138457014A5035990793 @default.
- W2138457014 hasAuthorship W2138457014A5073763227 @default.
- W2138457014 hasConcept C111030470 @default.
- W2138457014 hasConcept C113238511 @default.
- W2138457014 hasConcept C11413529 @default.
- W2138457014 hasConcept C116738811 @default.
- W2138457014 hasConcept C124101348 @default.
- W2138457014 hasConcept C153180895 @default.
- W2138457014 hasConcept C154945302 @default.
- W2138457014 hasConcept C159985019 @default.
- W2138457014 hasConcept C169903167 @default.
- W2138457014 hasConcept C180016635 @default.
- W2138457014 hasConcept C192562407 @default.
- W2138457014 hasConcept C38652104 @default.
- W2138457014 hasConcept C41008148 @default.
- W2138457014 hasConcept C51632099 @default.
- W2138457014 hasConcept C70518039 @default.
- W2138457014 hasConcept C78548338 @default.
- W2138457014 hasConcept C94475309 @default.
- W2138457014 hasConcept C95623464 @default.
- W2138457014 hasConcept C99138194 @default.
- W2138457014 hasConceptScore W2138457014C111030470 @default.
- W2138457014 hasConceptScore W2138457014C113238511 @default.
- W2138457014 hasConceptScore W2138457014C11413529 @default.
- W2138457014 hasConceptScore W2138457014C116738811 @default.
- W2138457014 hasConceptScore W2138457014C124101348 @default.
- W2138457014 hasConceptScore W2138457014C153180895 @default.
- W2138457014 hasConceptScore W2138457014C154945302 @default.
- W2138457014 hasConceptScore W2138457014C159985019 @default.
- W2138457014 hasConceptScore W2138457014C169903167 @default.
- W2138457014 hasConceptScore W2138457014C180016635 @default.
- W2138457014 hasConceptScore W2138457014C192562407 @default.
- W2138457014 hasConceptScore W2138457014C38652104 @default.
- W2138457014 hasConceptScore W2138457014C41008148 @default.
- W2138457014 hasConceptScore W2138457014C51632099 @default.
- W2138457014 hasConceptScore W2138457014C70518039 @default.
- W2138457014 hasConceptScore W2138457014C78548338 @default.